
A Model-driven Ontology Approach for Developing Service
System Applications

Petrenko OO1* and Petrenko AI2

1PhD student, National Technical University of Ukraine, Kiev Polytechnic Institute, Ukraine
2 Professor, Head of System Design Department, National Technical University of Ukraine, Kiev Polytechnic Institute,

Ukraine

Journal of Computer Science Applications and Information Technology Open AccessReview article

Abstract
This paper aims to survey the new methodology and tools for

user-defined applications development, based on Service-Oriented
Computing (SOC) and Model-Driven Approach (MDA), when all
computing units, both hardware and software, can be treated as
services and domain ontology acts as a meta-model basis to generate
a conceptual model for specific information systems. It allows
programmers to create new applications using ready-made service
available on the network, from one side, and an application itself may
create (compose) the infrastructure it needs to run, from other.

Keywords: Service-oriented computing (SOC); Web services;
Model-driven approach (MDA); Services Repository; Application
Software;

Received: November 11, 2017; Accepted: November 22, 2017; Published: December 05, 2017

*Corresponding author: Petrenko OO, PhD student, National Technical University of Ukraine, Kiev Polytechnic Institute, 37 Peremogu Rd, Kiev,
Ukraine, E-mail: petrenko.chiffa@gmail.com

Symbiosis www.symbiosisonline.org
www.symbiosisonlinepublishing.com

Symbiosis Group * Corresponding author email: petrenko.chiffa@gmail.com

Introduction
In recent years there is a tendency to create information

systems of the so-called “extended enterprise”, which brings
together the company itself, its suppliers, partners and
customers in a single system to meet needs for integration
and interoperability of applications. Therefore, applications
interaction is required as within a single information system so
between the systems of different participants in the business
process. The solution, actively developed by leading providers
of information technology (IBM, Microsoft, Oracle and others), is
to move from a centralized IT infrastructure to an architecture
which enables rapid creation of new systems from a set of
available services. It means the transition to the so-called Service-
oriented Architecture (SOA) and its implementation in forms of
process-oriented business models (Model-driven architecture,
MDA) [1-5].

SOA is a style of software architecture, where business
functionality or application logic becomes available to users
of SOA as a set of multiple shared services in IT networks.
Services in an SOA are business process modules, or modules
of the applications functionality with open interfaces, caused
by messages. The main reason for the emergence of SOA is the
cherished dream of the software industry to replace the “manual”
programs coding by “industrial” applications assembling from the

“standard components”, as it happens in a car or other “traditional”
industries. Program components may be located on different
nodes of the network and be independent, loosely coupled,
replaceable services-applications. Moreover, the integration of
legacy applications (legacy) is advantageously carried out with
the use of this technology, when certain, most important part of
the existing functionality is “encapsulated” and submitted with
standardized interface. In cases where the services represent
computational procedures, systems are considered as systems
of Service-oriented Computing (SOC). SOC refers to the set of
concepts, principles, and methods that represent computing in a
collection of loosely coupled services.

Now it is time to move to a new programming paradigm,
not associated with objects but with business processes and
their components - business functions. The main idea is to build
an application by discovering and using services, available on
the network, to perform a certain task. This approach does
not depend on specific programming languages and operating
systems, and involves the use of SOA applications, built on the
basis of formalized business processes and functions been
presented in the form of reusable services with transparently
described interfaces. The article discusses the development of
systems services for the implementation of business processes
via a process-oriented business model and features of ontologies
relevant subject areas.

The rest of the paper is organized as follows. In Basic of
Service Systems Engineering section and Ontologies in Service
Systems Design section basic concepts are reviewed. Next, we
discuss model - driven approach in service systems design. There
is a comparison between the proposed approach to software
development and other approaches in addition to the conclusion,
and suggestions for future works.

Basic of Service Systems Engineering
At present, due to the leading World IT companies’ efforts,

the methodology and tool for design service-oriented systems
are developed that in the best way is reflected in the serial
publications “Industrial SOA” [6]. They are oriented on

A Model-driven Ontology Approach for Developing Service System Applications

Page 2 of 7Citation: Petrenko OO, Petrenko AI (2017) A Model-driven Ontology Approach for Developing Service System Applications. J Comp
Sci Appl Inform Technol 2(4): 1-7. DOI:http://dx.doi.org/10.15226/2474-9257/2/4/00122

Copyright:

© 2017 PetrenkoA et al.

applications composing, mainly with the use of Web services
(WS). Web services are referred to software components that
use XML (Extensible Markup Language) as the data format,
Web Services Description Language (WSDL) standards to
describe their interfaces, Simple Object Access Protocol (SOAP)
to describe the format of the received and sent messages and
standard Universal Description Discovery and Integration
(UDDI) to create catalogs of available services [7].

To compose services into necessary applications procedures
“choreography” and “orchestration” are proposed, when Web
services choreography defines the interaction between the
services using the exchange notifications, and orchestration
describes the interaction of services within a single business
process, in particular, using the language WS-BPEL (Web
Services Business Process Execution Language). The easiest
way of business process presentation is a simple orchestration of
Web services, which is the flow of tasks (workflows), when each
service follows the previous, without delay or space and its effect
ends just before the next service action begins [8].

The IBM Company offers SOA implementation tools named
ODOE (On Demand Operating Environment) to meet the needs of
service-oriented IT solutions, the main of which are [9]:

• Application Services (AS), which include all components
required to build the information system been configured.

• Enterprise Service Bus (ESB), which acts as an intelligent
layer (middleware) for connecting information systems, different
data and other services, which are usually distributed throughout
the enterprise IT environment.

• Business services (BS), which present an open part of the
business process (business functionality), and which ensure the
implementation of a given value to the customer’s request.

• Common Services (CS) for providing personalized
delivery and individual treatment, as well as other utilities,
such as reporting. These services allow to define and to execute
conditional flows, mainly for logical business function services.

• Information Management Services (BPM), which provide
a standardized way of representing, accessing, maintaining,
managing, analyzing and integrating data and content from
heterogeneous information sources.

• Infrastructure Services (IS), which are independent from a
platform, and which allow all the other services to be established,
implemented and monitored in a specific infrastructure,
consisting of operating systems and network and hardware
systems.

Information about the most well-known SOC development
tools are shown in Table 1 below [10].

Table 1: Major SOC Tools Comparison

SOC Tools Description Vendor

Websphere It has many SOC features, such as service composition, discovery, and modeling. IBM

.NET This supports many features of SOC including service creation, discovery, composition, deployment. Microsoft

HP SOA Center This supports SOC features such as service composition, modelling, integration, management. HP

Oracle SOA Suite This supports service creation, deployment, composition, orchestration. Oracle

Enterprise SOA This supports service creation, deployment, composition. SAP

Weblogic This supports service deployment, composition, management, policy. BEA

It should also be noted that at present time there are a number
of known repositories of general purpose services, such as: the
External EGI service catalogue for researchers (https://www.
egi.eu/services/); Internal service catalogue for EGI Federation
members (https://www.egi.eu/internal-services/); INDIGO
IAM services (https://github.com/indigo-iam/iam); EUDAT
service registry(http://eudat.eu/ support-request); GEANT
Cloud services (https://clouds.geant.org/); Fi-Ware services
for Internet of Things (https://www.fiware.org/ developers-
entrepreneurs/),

With expanding attention to business Web-based solutions
there are increasing demands for business services and business
functionality. It is vitally necessary to identify possible invariant
services for systems, focusing on human activities (electric
networks, water supply, transportation systems, health-care
system, the education system, the banking and financial systems,
online retail, tourism system, media and entertainment, and
others). This will help to create a repository of multidisciplinary
invariant services as the building blocks of the relevant service

systems. The amount of research is so great that requires the
collective efforts of many partners and participators.

Such a repository could be the basis for creating the Service
Science Knowledge Environment, which will bring together
academia, industry and government, as well as other European
institutions [11]. In this first stage the resources knowledge can
belong to different application domains, such as: e-administration,
e-government, e-health, production, energy consumption, with
a focus on the ability of the Smart Grid, advanced software
services, supply chain and logistics services, tourism and
recreation, advanced services in the field of telecommunications.
The list of service sectors, providing a real contribution to a
modern economy, is not limited to the names listed above. Smart
transport, smart buildings, smart water are only some other
possible applications service sectors for which new services.

Web services described in WSDL, contain predominantly
syntactic information, and this makes it difficult to organize
the automatic Web service discovery and execution service
compositions. Therefore, it was proposed (in addition to semantic

Page 3 of 7Citation: Petrenko OO, Petrenko AI (2017) A Model-driven Ontology Approach for Developing Service System Applications. J Comp
Sci Appl Inform Technol 2(4): 1-7. DOI:http://dx.doi.org/10.15226/2474-9257/2/4/00122

Copyright:

© 2017 Petrenko et al.

annotations) to use directly semantic information in Web services
descriptions, resulting in appearance of Semantic Web services
(SWS) with own description languages, such as OWL-S (Web
Ontology Language for Web Services) and WSMO (Web Service
Modeling Ontology). SWS are created on the basis of the existing
Web-2 technology to provide dynamic discovery services, their
composition, and Web services call that are understood by
the computer also. The result is the ability to automate these
procedures which currently require software developers help to
run [12].

The configuration and coordination of services in architecture,
based on the services, and the composition of services and
processes are equally important in modern service systems.
As it was noted above, the services interact with each other via
messages. Message can be accomplished by using a template
“request/response”, when at a given time only one of the specific
services is caused by one user (an “one-to-one” connection or
synchronous model); using a template “publish/subscribe”
when on one particular event many services can respond to
(an “one-to-many “ communication or asynchronous model);
using intelligent agents that determine services coordination,
because each agent has at its disposal some of the knowledge of
the business process and can share this knowledge with other
agents [13]. NTUU “KPI” explores hybrid Event-Driven Service-
Oriented Architecture (EDSOA), in which services generate
events and thus translate the business process from one state to
another. If there is a “network” of sensors and software agents
that monitors important business events in all enterprise
hardware and software components, then whole business is
controlled technologically not blindly, but having a clear picture
of everything that is happening at the moment in the company.

Ontologies in Service Systems Design
 In recent years different levels of ontologies (Domain,

Application, and Task ontologies) are used in service systems
development [15]. Ontologies, described in the OWL language,
are formal explicit descriptions of concepts in a given domain
area. Classes are the central item of the ontology. For example,
Action class may represent all procedures (running tasks, data
transmission, data flow control, etc.). Specific procedures are
instances of the class. A class can have subclasses that represent
more specific concepts than the superclass. Slots describe
properties of classes and instances, say, a Task procedure may
contain or the file (contains File), or to create a resource (creates
Resource) or to depend on certain conditions (has Dependency).

Slots can have different facets describing the value type,
the numerical values of the permitted limits and other changes.
Ontology together with a set of individual class instances
constitutes a knowledge base. In fact, it is difficult to determine
where the ontology ends and where the knowledge base
begins. Ontologies are shared knowledge. They enable high
level of interaction between the human users and “intelligent”
applications. Ontologies do not describe systems, only domains.
Hence, in a software developing process, they should play the role
of an analysis model, not of a design or implementation model.

OMG (Object Management Group) proposed a hierarchical
system of service systems semantic description for their
modeling, which consists of an M0 level (objects), the M1 level
(models), the M2 level (meta-model or language level), and the
M3 (meta-meta-model or language description level) which is
often called Meta Object Facility (MOF) [16]. In general, meta-
models are language specifications, not only of modelling, but
also of arbitrary languages. If two Software Engineering tools
agree on the same meta-model, they impose the same structure
on their models, so that they can easily exchange them. Software
processes, being specific work flows, can be meta-modelled and
used to construct software environments.

The process of designing system services can be modelled
as a process of transformation models from a meta-model as
input, and using a set of conversion rules. The transformation
itself is also a model. Transformation models can have a variety
of applications:

• Creating low-level models, and as a result the initial code,
moving from models of a higher level.

• Display and synchronization between models at the same
level or at different levels of abstraction.

• Creating a presentation about the system on the basis of
requests.

• The evolution of model problems, such as refactoring
pattern, i.e. change internal system structure in order to make
it easier to be understood and further changeable, while not
altering the existing functionality.

• Reverse design from the lower level models (or even code)
to models of a higher level.

Models conversion is a key element in services system design,
which provides ontological processing means for generating
conceptual models. Languages of models conversion models
support different types of transformations, such as model-model
(MM) or a model-code (MC). A feature of this approach is that
most of the time a developer works not with the code, and with
the models.

Ontologies are of great use for providing better human and
machine experience/interaction and for software engineering
in the new computing paradigm. Ontologies will provide a
neutral authoring mechanism where resulting ontologies will
be automatically converted into different information and
application artifacts.

Model - Driven Approach in Service Systems
Design

 The Model - driven approach (MDA) for a system
development was suggested, which is a variant of this refinement-
based software development in which models are no longer
loosely coupled, but connected in a systematic way: that is, model
elements must be traceable from a more abstract model to a more
concrete model and vice versa [17-23]. This is achieved through
meta-modelling: meta-models define sets of valid models,

A Model-driven Ontology Approach for Developing Service System Applications

Page 4 of 7Citation: Petrenko OO, Petrenko AI (2017) A Model-driven Ontology Approach for Developing Service System Applications. J Comp
Sci Appl Inform Technol 2(4): 1-7. DOI:http://dx.doi.org/10.15226/2474-9257/2/4/00122

Copyright:

© 2017 Petrenko et al.

facilitating their transformation, serialization, and exchange.
There is the considerable amount of similarity between Ontology-
driven and Model-driven approaches that makes really possible
to use them both for automated software development based on
higher abstraction. In this process, one specific type of model
information, the platform information, plays an important role.
In MDA, models differ in how much platform information they
contain. For instance, one platform can be the programming
language of the system, another can be the employed libraries
or frameworks, a third can be the binary component model. The
designer begins with a high-level model that abstracts from all
kinds of platform issues, and iteratively transforms the model
to more concrete models, introducing more and more platform-
specific information.

MDA uses the MOF-based models for the creation and
manipulation of accurate, detailed, computer-readable
description of the application structures independent of
programming languages, operating systems and databases,
which can be used to implement them. It should be noted that a
key standard for MDA is the MOF, but not UML, as some people
still believe. MDA, based on a three-layer approach, provides:

• Computational independent model (CIM), which describes
a system with independent computing point of view, highlighting
the structural aspects of the system, changing the emphasis from
a domain modeling to architecture modeling. A CIM is sometimes
called a domain model.

• Platform independent model (PIM), which can be
considered as the definition of the system from point of view of
a neutral virtual machine or computer abstraction. The platform

independent viewpoint focuses on the operation of a system
while hiding the details necessary for a particular platform. So it
is suitable for use with a number of different platforms of similar
type.

• Platform Specific Model (PSM), which usually covers the
technical concepts and services comprising the implementation
platform. That is, this model is aimed at a specific implementation
services system technology.

A PSM combines the specifications in the PIM with the details
that specify how that system uses a particular type of platform.

The CIM, PIM, and PSM models live on level M1 (Figure 1).
All of them are specified on level M2 by meta-models (CIM-MM,
PIM-MM, PSM-MM), dialects of UML, enriching the UML core
by profiles containing markup for model elements (stereotypes
and tagged values) [24]. A meta-model describes properties and
structures of each of the CIM, PIM and PSM models accurately.
In our case a platform based on Web services is chosen. Web
services options for accessing the service repository as well as
protocols for communication between services and customers
form a platform of SOA implementation.

In principle the MDA process starts with defining CIM or
domain models, then these models can be transformed by
professionals to PIM and PSM models. These transformations
are called vertical transformations (Figure 1). A direct vertical
transformation is not always possible because there gaps between
the models that are too big to bridge in a single transformation. In
these cases, additional transformations are used to, for instance,
transform a certain abstract PIM model to a more detailed PIM
(horizontal transformations).

Figure 1: The meta-pyramid with CIM, PIM, PSM models

A Model-driven Ontology Approach for Developing Service System Applications

Page 5 of 7Citation: Petrenko OO, Petrenko AI (2017) A Model-driven Ontology Approach for Developing Service System Applications. J Comp
Sci Appl Inform Technol 2(4): 1-7. DOI:http://dx.doi.org/10.15226/2474-9257/2/4/00122

Copyright:

© 2017 Petrenko et al.

Various types of platforms may differ. A common feature of
the platform is its service-oriented architecture, and the specific
technologies of implementation are Web services and service
arrangements (for example, Apache Axis, or Oracle BPEL). As it
was noted above, metamodelling is one of the most important
concepts of the MDA. Ontologies are considered as CIM model, so
conceptual models PIM and PSM also reflect the semantics of the
application for the domain corresponding to the semantics of real-
world domain (Real World), regardless of the specific application
needs. The designer starts from standardized analysis models,
ontologies, which may have been defined long before project start.
These domain and business models are refined towards design
models. First, the requirements are added to yield a complete
CIM. This is refined to a PIM and, then, conventionally, via
several PSMs towards an implementation. Employing ontologies
as analysis models should increase the reliability of software
products, because these models are well engineered, often used,
and hence trustworthy. This avoids the risks of a self-made
domain analysis. Secondly, ontologies as analysis models offer a
more common vocabulary for the software architect, customer,
and domain expert. This should improve the understanding
of the parties that order and construct software. Then, the
standardization of the ontologies improves the interoperability of
applications, because applications that use the ontology contain
a common core of common vocabulary. Finally, domain and

business ontologies can be reused in many software products.
The exchange of meta-data has been simplified by the XMI
standard [25]. Essentially, XMI defines meta-model mappings on
level M2 between the UML meta-model, XML schema definitions,
and a programming language—for example, Java. Based on these
mappings, serialization of graph-like UML models to tree-shaped
XML models can be automated. Also, Java class models, which use
a restricted form of inheritance, can be generated automatically
[26,27]. Thus, ontology acts as a meta-model basis to generate a
conceptual model for specific information systems.

When Platform-Specific Model (PSM) is created the necessary
services are discovered through the network, and the use of
ontology improves the accuracy of the discovering such service
which corresponds exactly to the customer’s request instead
opening arbitrary services, descriptions of which met the
specified keyword [28]. It is well known that in various subject
areas same concepts can be presented in different terms. The
mechanism of ontology in these cases allows to create meaningful
hierarchical relationships between services, that is, to realize the
composition of services, able to satisfy the user’s request, even
though in its description there are no some of the key words from
the input customers’ query.

With regard to the development of software applications,
model-oriented SOC design procedures are summarized in Table
2.

Table2: Comparison of different approaches to software development

Object-oriented Design Model-oriented SOA Design

RESPONSIBLE EXECUTORS

Software developers, most of the time working with the code Software architects, most of the time working jointly with the domain
experts in oncology and models

TECHNICAL REQUIREMENTS ANALYSIS STAGE

The requirements are given in natural language for system analysts who
convert their technical characteristics in order to enable developers/
designers to understand them.

Domain analysis is done by the service provider that allows application
developers to focus only on discovering and composing services which
meet the business/ technical characteristics.

DESIGN STAGE

Refinement of the class structure,
the design of the system architecture
(Structure components and modules), the choice of building blocks.

Select or build ontologies of the application domain and application itself,
repository services discovering.

IMPLEMANTATION STAGE

Encoding in a particular programming language (Java, C ++, C #).
Development is done by one (virtual or physical) team, which creates
functions, classes, modules.

 Service models are provided in machine-readable form that allows systems
developers to convert them into executable code (CIM-> PIM -> PSM->
UML). New services can be dynamically created using the existing ones.

TESTING AND SUPPORT STAGE

Testing is usually performed in the same organization on the basis of
source code and functional specifications.
Test scripts are defined by developers / testers.

Testing is divided between the service provider, the broker and the client
with little or no interaction between them. Test scripts can be generated on
the basis of service metadata and specifications.

GENERAL FEATHERS OF SOLUTIONS

Project-specific solutions for selected domain with relatively short
using time, which are difficult to reuse.

Cross-project solutions which are serving multiple domains and are shared
by many designers and organizations.

A Model-driven Ontology Approach for Developing Service System Applications

Page 6 of 7Citation: Petrenko OO, Petrenko AI (2017) A Model-driven Ontology Approach for Developing Service System Applications. J Comp
Sci Appl Inform Technol 2(4): 1-7. DOI:http://dx.doi.org/10.15226/2474-9257/2/4/00122

Copyright:

© 2017 Petrenko et al.

Conclusions
 The orientation of the world economy on the service industry,

the emergence of the interdisciplinary science of services,
expanding service approaches to technical systems (in particular,
to software structure) motivate economists, sociologists,
mathematicians, programmers and lawmakers to work together
to achieve a very important goal: analyze, build, manage and
development of complex service systems. The main task is to
identify the logic of complex service systems and to introduce
a common methodology for their modelling and the overall
framework for service innovation. Service-Oriented Architecture
(SOA) has been successfully deployed as an architectural
paradigm for these purposes. The dominance of the Web services
platform in distributed systems development and deployment
has given a boost to SOA as an approach to software architecture.

 In this paper, a formal ontology-based and model-
driven approach is presented for developing Service System
Applications. In the analysis phase (conceptual modeling) of any
software system the emphasis is placed on the data (i.e., in the
domain information or CIM model), rather than in the operations
(i.e., the behavior). In this vein, the MDA allows representing
models of the real-world using conceptual models that abstract
key domain concepts, to represent them appropriately and allows
transforming them into code correctly.

Considered approach to service systems design is well
adapted to the peculiarities of modern distributed computing
environments (such multi-clouds or grid), where Web services
can be found in various geographically dispersed repositories
(possibly in several equivalent embodiments), and their
composition as applications are executed on different computing
nodes of the environment, resources of which are freed at the
beginning of the next execution of service compositions. As a
result, the implemented applications have dynamically variable
architecture and variable component compositions. So instead of
traditional usages of programming languages for specifying how
a system is to be implemented, the approach in hands allows
specifying what system functionality is required and what
architecture is to be used.

 A study case of implementing the Model-driven Ontology
to the design and execution of mobile application for supporting
mHealth needs will be presented in the next paper.

References
1.	 Maglio P, Kieliszewski CA, Spohrer J. Handbook of Service Science.

Service Science: Research and Innovations in the Service Economy.
Springer. 2010:754.

2.	 Succeeding through service innovation: A service perspective
for education, research, business and government. University of
Cambridge Institute for Manufacturing (IfM) and International
Business Machines Corporation (IBM). 2008;ISBN:978-1-902546-65-
0:30.

3.	 Atkinson C, Kühne T. Model-driven development: A metamodelling
foundation. IEEE Software. 2003;20(5):36–41.

4.	 Alahmari S, Roure DD, Zaluska E. A Model-Driven Architecture
Approach to the Efficient Identification of Services on Service-
Oriented Enterprise Architecture. EDOCW. 2010:165-172.

5.	 Schmidt DC. Model-Driven Engineering. IEEE Computer.
2006;39(2):25-31.

6.	 Jürgen Kress, Berthold Maier, Hajo Normann, Danilo Schmeidel, Guido
Schmutz, Bernd Trops, Clemens Utschig-Utschig, Torsten Winterberg.
Industrial SOA: http://www.oracle.com/ technetwork/articles/soa/
ind-soa-toc- 1934143.html.5

7.	 World Wide Web Consortium. Web Services Architecture. 2006:98.

8.	 Workflow Tutorial. Available from: http://www.pnmsoft.com /
resources/bpm-tutorial/workflow-tutorial/

9.	 The Solution Designer’s Guide to IBM on Demand Business Solutions
(ODOE). 2015;Available from: http://www.redbooks.ibm.com/
redbooks/pdfs/sg246248.pdf

10.	Tsai WT, Yinong Chen, Calvin Cheng, Xin Sun, Gary Bitter, Mary White.
An Introductory Course on Service-Oriented Computing for High
Schools. Journal of Information Technology Education. 2008;7:315-
337.

11.	Service Science Knowledge Environment. Available from: http://sske.
cloud.upb.ro/sskemw/index.php/Main_Page

12.	Semantic Web services (SWS). Available from: https://www.dfki.
de/~klusch/i2s/cascom_book_ch3-4.pdf

13.	Petrenko AA. Comparing the types of service system architectures (in
Ukrainian). System Research and Information Technology, 2015;№
4:48-62.

14.	Petrenko A.A. Objects and methods of the services science (in Russian).
System Research and Information Technology, 2015;№ 2:75-82.

15.	Ruiz F, Hilera JR. Using Ontologies in Software Engineering and
Technology. In Ontologies for Software Engineering and Software
Technology. Springer Verlag. 2006:49-102.

16.	OMG. MDA Guide V1.0. 2003; Available from: http://www.omg.org/
cgi-bin/doc?formal/03-05-01

17.	Favre JM, NguyenT. Towards a megamodel to model software evolution
through transformations. Electronic Notes in Theoretical Computer
Science. 2005;127(3):59–74.

18.	María-Cruz Valiente, Cristina Vicente-Chicote, Daniel Rodríguez. An
Ontology-Based and Model-Driven Approach for Designing IT Service
Management Systems. International Journal of Service Science,
Management, Engineering, and Technology. 2011;2(2):65-81.

19.	Saad Alahmari, David de Roure, Ed Zaluska. A Model-Driven
Architecture Approach to the Efficient Identification of Services on
Service-Oriented Enterprise Architecture. Enterprise Distributed
Object Computing Conference Workshops (EDOCW). 2010. DOI:
10.1109/EDOCW.2010.28

20.	Khoshnevis S, Shams Aliee F, Jamshidi P. Model Driven Approach to
Service Oriented Enterprise Architecture. 2009 IEEE Asia-Pacific
Services Computing Conference (IEEE APSCC). 2009:279-286.

21.	Sinan Si Alhir. Understanding the Model Driven Architecture (MDA).
Fall 2003 issue of Methods & Tools. 2013.

22.	Enterprise Architect. Sparx Systems. 2008. Available form: http://
www.sparxsystems.com/products/ea/trial/request.html

A Model-driven Ontology Approach for Developing Service System Applications

http://www.springer.com/in/book/9781441916273
http://www.springer.com/in/book/9781441916273
http://www.springer.com/in/book/9781441916273
http://ieeexplore.ieee.org/document/1231149/
http://ieeexplore.ieee.org/document/1231149/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/1597083/
http://ieeexplore.ieee.org/document/1597083/
http://www.w3.org/TR/ws-arch
http://www.pnmsoft.com%20/resources/bpm-tutorial/workflow-tutorial/
http://www.pnmsoft.com%20/resources/bpm-tutorial/workflow-tutorial/
http://www.redbooks.ibm.com/redbooks/pdfs/sg246248.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246248.pdf
http://www.jite.org/documents/Vol7/JITEv7p315-338Tsai378.pdf
http://www.jite.org/documents/Vol7/JITEv7p315-338Tsai378.pdf
http://www.jite.org/documents/Vol7/JITEv7p315-338Tsai378.pdf
http://www.jite.org/documents/Vol7/JITEv7p315-338Tsai378.pdf
http://sske.cloud.upb.ro/sskemw/index.php/Main_Page
http://sske.cloud.upb.ro/sskemw/index.php/Main_Page
https://www.dfki.de/~klusch/i2s/cascom_book_ch3-4.pdf
https://www.dfki.de/~klusch/i2s/cascom_book_ch3-4.pdf
http://www.springer.com/in/book/9783540345176
http://www.springer.com/in/book/9783540345176
http://www.springer.com/in/book/9783540345176
http://www.omg.org/cgi-bin/doc%3Fformal/03-05-01
http://www.omg.org/cgi-bin/doc%3Fformal/03-05-01
https://www.sciencedirect.com/science/article/pii/S1571066105001398
https://www.sciencedirect.com/science/article/pii/S1571066105001398
https://www.sciencedirect.com/science/article/pii/S1571066105001398
http://www.cc.uah.es/drg/j/Valiente_JSSMET_2_2_4_text.pdf
http://www.cc.uah.es/drg/j/Valiente_JSSMET_2_2_4_text.pdf
http://www.cc.uah.es/drg/j/Valiente_JSSMET_2_2_4_text.pdf
http://www.cc.uah.es/drg/j/Valiente_JSSMET_2_2_4_text.pdf
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5629010/
http://ieeexplore.ieee.org/document/5394112/
http://ieeexplore.ieee.org/document/5394112/
http://ieeexplore.ieee.org/document/5394112/
http://www.methodsandtools.com/archive/archive.php%3Fid%3D5
http://www.methodsandtools.com/archive/archive.php%3Fid%3D5
http://www.sparxsystems.com/products/ea/trial/request.html
http://www.sparxsystems.com/products/ea/trial/request.html

Page 7 of 7Citation: Petrenko OO, Petrenko AI (2017) A Model-driven Ontology Approach for Developing Service System Applications. J Comp
Sci Appl Inform Technol 2(4): 1-7. DOI:http://dx.doi.org/10.15226/2474-9257/2/4/00122

Copyright:

© 2017 Petrenko et al.

23.	Eldein I, Ammar HH. Model-Driven Architecture for Cloud Applications
Development, A survey, International Journal of Computer Applications
Technology and Research. 2015;4(9):698-705.

24.	Uwe Aßmann, Steffen Zschaler. Ontologies, Meta-models, and the
Model-Driven Paradigm. In Ontologies for Software Engineering and
Software Technology. Springer Verlag. 2006:249-273.

25.	OMG. XML Metadata Interchange (XMI). 2002; Available from: http://
www.omg.org/technology/ documents/ format/xmi.htm

26.	Pahl C, Barrett R. Semantic Model-Driven Architecting of Service-
based Software Systems. 28.

27.	Kalyanpur A, DJ Pastor, Battle S, Padget J. Automatic mapping of
OWL ontologies into Java. Proc of 16th International Conference on
Software Engineering and Knowledge Engineering. 2004:98-103.

28.	Petrenko IA, Petrenko AA. Automated methods of required services
search and discovery (in Ukrainian). Bulletin of the University
“Ukraine”, Series “Information, Computing and Cybernetics”. 2015;№1
(17):55-64.

A Model-driven Ontology Approach for Developing Service System Applications

https://www.slideshare.net/journalsats/modeldriven-architecture-for-cloud-applications-development-a-survey
https://www.slideshare.net/journalsats/modeldriven-architecture-for-cloud-applications-development-a-survey
https://www.slideshare.net/journalsats/modeldriven-architecture-for-cloud-applications-development-a-survey
https://www.google.co.in/url%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D1%26ved%3D0ahUKEwjH4vSn1erXAhUeS48KHSL2AS0QFggoMAA%26url%3Dhttps%253A%252F%252Fwww.springer.com%252Fcda%252Fcontent%252Fdocument%252Fcda_downloaddocument%252F9783540345176-c1.pdf%253FSGWID%253D0-0-45-339791-p173660189%26us
https://www.google.co.in/url%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D1%26ved%3D0ahUKEwjH4vSn1erXAhUeS48KHSL2AS0QFggoMAA%26url%3Dhttps%253A%252F%252Fwww.springer.com%252Fcda%252Fcontent%252Fdocument%252Fcda_downloaddocument%252F9783540345176-c1.pdf%253FSGWID%253D0-0-45-339791-p173660189%26us
https://www.google.co.in/url%3Fsa%3Dt%26rct%3Dj%26q%3D%26esrc%3Ds%26source%3Dweb%26cd%3D1%26ved%3D0ahUKEwjH4vSn1erXAhUeS48KHSL2AS0QFggoMAA%26url%3Dhttps%253A%252F%252Fwww.springer.com%252Fcda%252Fcontent%252Fdocument%252Fcda_downloaddocument%252F9783540345176-c1.pdf%253FSGWID%253D0-0-45-339791-p173660189%26us
http://ceur-ws.org/Vol-244/paper3.pdf
http://ceur-ws.org/Vol-244/paper3.pdf
https://www.researchgate.net/profile/Julian_Padget/publication/221389740_Automatic_Mapping_of_OWL_Ontologies_into_Java/links/0912f50ce3ec56c1fc000000/Automatic-Mapping-of-OWL-Ontologies-into-Java.pdf
https://www.researchgate.net/profile/Julian_Padget/publication/221389740_Automatic_Mapping_of_OWL_Ontologies_into_Java/links/0912f50ce3ec56c1fc000000/Automatic-Mapping-of-OWL-Ontologies-into-Java.pdf
https://www.researchgate.net/profile/Julian_Padget/publication/221389740_Automatic_Mapping_of_OWL_Ontologies_into_Java/links/0912f50ce3ec56c1fc000000/Automatic-Mapping-of-OWL-Ontologies-into-Java.pdf

