Marine Algae: An Extensive Review of Medicinal & Therapeutic Interests

Abdul Kader Mohiuddin*

Secretary & Treasurer, Dr. M. Nasirullah Memorial Trust

Abstract

The global economic impact of the five leading chronic diseases — cancer, diabetes, mental illness, CVD, and respiratory disease — could reach $47 trillion over the next 20 years, according to a study by the World Economic Forum (WEF). According to the WHO, 80% of the world’s population primarily those of developing countries rely on plant-derived medicines for healthcare. The purported efficacies of seaweed derived phytochemicals is showing great potential in obesity, T2DM, metabolic syndrome, CVD, IBD, sexual dysfunction and some cancers. Therefore, WHO, UN-FAO, UNICEF and governments have shown a growing interest in these unconventional foods with health-promoting effects. Edible marine macro-algae (seaweed) are of interest because of their value in nutrition and medicine. Seaweeds contain several bioactive substances like polysaccharides, proteins, lipids, polyphenols, and pigments, all of which may have beneficial health properties. People consume seaweed as food in various forms: raw as salad and vegetable, pickle with sauce or with vinegar, relish or sweetened jellies and also cooked for vegetable soup. By cultivating seaweed, coastal people are getting an alternative livelihood as well as advancing their lives. In 2005, world seaweed production totaled 14.7 million tons which has more than doubled (30.4 million tons) in 2015. The present market value is nearly $6.5 billion and is projected to reach some $9 billion in the seaweed global market by 2024. Aquaculture is recognized as the most sustainable means of seaweed production and accounts for approximately 27.3 million tons (more than 90%) of global seaweed production per annum. Asian countries produced 80% for world markets where China alone produces half of the total demand. The top six seaweed producing countries are China, Indonesia, Philippines, Korea, and Japan.

Keywords: seaweeds; cancer prevention; hyperglycemia management; microalgae; neuroprotection; alimentary disorders

Figure 1: Seaweed Farming: According to FAO of the UN, nearly 45% of the female workforce is working in agriculture. Seaweed farming is surely a step toward gender equality (Source: SOFA Team and Cheryl Doss. The role of women in agriculture. ESA Working Paper No. 11-02, March 2011)
Obesity, Hypertension and Hyperglycemia Management

According to the WHO, 2.3 billion adults are overweight and the prevalence is higher in females of childbearing age than males [1]. In the US, the economic burden of obesity is estimated to be about $100 billion annually [2]. Worldwide obesity causes 2.8 million deaths per year and 35.8 million disability-adjusted life-years, some 45% of diabetes, 25% of IHDs and up to 41% of certain cancers [3]. Four major bioactive compounds from seaweeds which have the potential as anti-obesity agents are fucoxanthin, alginate, fucoidans and phlorotannins [4]. Alginate are amongst the seaweed fibers that are well-known for their anti-obesity effects. They have been shown to inhibit pepsin, pancreatic lipase, reduced body weight, BMI, and the blood glucose level, ameliorate fat accumulation, TG and TC in experimental animals [5-7]. Koo et al, 2019 reported Fucoxanthin powder developed from microalga Phaeodactylum tricornutum (Bacillariophyta) plus CLA or Xanthigen improved lipid metabolism, reduced body weight gain and adipose tissue [8]. Individually, fucoxanthin lowers glycated hemoglobin, especially in healthy subjects with a certain UCP1 genotype [9]. Mendez et al, 2019 reported anti-obesogenic potential of seaweed dulse (Palmaria palmata) (Rhodophyta) in high-fat fed mice [10]. Seca et al, 2018 suggested that small peptides from seaweed may possess bioactivity, for example, of relevance for BP regulation [11]. Yang et al, 2019 reported Fucoidan A2 from the brown seaweed Ascophyllum nodosum (Ochrophyta, Phaeophyceae) (Figure 3) lowers lipid by improving reverse cholesterol transport in mice [12]. Sørensen et al, 2019 reported improved HbA1C and lipid profile with Saccharina latissima (Ochrophyta, Phaeophyceae) or sugar kelp (Figure 4) in mice [13]. Fucoidan taken twice daily for a period of 90 days did not markedly affect insulin resistance in obese, non-diabetic cohort, but attenuates obesity-induced severe oxidative damage, show anticoagulant activity, suppress fat accumulation, may improve obesity-induced OA, antioxidant and lipolytic activities [14-19]. Catarino et al, 2017 and 2017 reported Fucus vesiculosus (Ochrophyta, Phaeophyceae) (Figure 5) phlorotannin-rich extracts have significant effect on α-glucosidase, α-amylase and pancreatic lipase [20]. Phlorotannins, farnesylacetones and other constituents from seaweeds—have also been described for their potential use in hypertension due to their reported vasodilator effects [21]. Sun et al, 2019 reported the hydrogen bond and Zn (II) interactions between the peptides of Marine Macroalga Ulva intestinalis (Chlorophyta) and ACE [22]. In similar studies, peptides from Sargassum siliquosum, Sargassum polycystum, Fucus spiralis (Ochrophyta, Phaeophyceae), Palmaria palmata, Pyropia yezoensis (Rhodophyta), Undaria pinnatifida (Ochrophyta, Phaeophyceae), Ulva clathrata (formerly Enteromorpha clathrata), Ulva rigida (Chlorophyta), Gracilariopsis lemaneiformis, Pyropia colombiana (Rhodophyta), Ecklonia cava, Ecklonia stolonifera, Pelvetia canaliculata, Sargassum thunbergii (Ochrophyta, Phaeophyceae), Pyropia yezoensis (formerly Porphyra yezoensis), Fushitsunagia catenata (formerly Lomentaria catenata), Lithophyllum okamurae, Ahnfeltiopsis fiabelliformis (Rhodophyta) show potential ACE inhibitor activities [23-28]. Besides the activation of Ag II, ACE plays a concomitant role in the regulation of hypertension via the inactivation of an endothelium-dependent vasodilatory peptide, bradykinin [28-29]. Kammoun et al, 2018 reported hypolipidemic and cardioprotective effects of Ulva lactuca (Chlorophyta), which effectively counteracts cardiototoxic effects of hypercholesterolemic regime [30]. In several studies Ulva species showed hypertensive, hypoglycemic, hypolipaemic and antiatherogenic properties [31-40]. Moreover, studies also support seaweed-induced effects of postprandial lipoproteinemia, postprandial hyperglycemia, lipid metabolism and atherosclerosis reduced body weight, HbA1C, reduced BP/episodes of hypertension and prevented obesity-induced oxidative damage [41-120]. Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia [28].

Figure 2: Palmaria palmata (Source: What is Dulse Seaweed? Mara Seaweed October 17, 2017).
Figure 3: *Ascophyllum nodosum* (Source: Ascophyllum nodosum. Jiloca Industrial, S.A. Agronutrientes Blog)

Figure 4: *Saccharina latissima* or sugar kelp (Source: Nature Picture Library).

Figure 5: *Fucus vesiculosus L.* (Source: Seaweed Site of M.D. Guiry)
Cancer Prevention & Tumor Control

In 2019, 1,762,450 new cancer cases and 606,880 cancer deaths are projected to occur in the United States [121]. Globally, cancer is responsible for at least 20% of all mortality, 18.1 million new cancer, 9.5 million death in 2018, the 5-year prevalence of 43.8 million is projected to rise by 61.4% to 27.5 million in 2040 [122-126]. Approximately 70% of deaths from cancer occur in LMICs [127]. Asia, Africa, and Latin America are collectively home to more than 50% of cancer patients; with more than half of global cancer-related mortalities occurring in Asia alone [128].

Cancer causes 46 billion in lost productivity in major emerging economies and economic costs of tobacco-related cancers exceed USD 200 billion each year [129-130]. Compounds from natural sources with anti-proliferative activity represent an important and novel alternative to treat several types of cancer. *Egregia menziesii* (brown seaweed) (Figure 6), *Portieria hornemannii*, *Grateloupia elliptica* (Rhodophyta), *Sargassum serratifolium*, *Chitosan alginate* (polysaccharide from seaweeds), xanthophylls (astaxanthin, fucoxanthin) and Phlorotannins (phloroglucinol) obtained from the microalgae, are reported in brain tumor (glioblastoma) studies. Astaxanthin and fucoxanthin are major marine carotenoids. Major seaweed algae sources of astaxanthin mono- and di-esters are the green microalgae (*Haematococcus lacustris* - formerly *Haematococcus pluvialis* (Figure 7), *Chromochloris zofingiensis* - formerly *Chlorella zofingiensis*, *Chlorococcum*) and red-pigmented fermenting yeast *Phaffia rhodozyma* [131-157]. Fucoxanthin is present in Chromophyta (Heterokontophyta or Ochrophyta), including brown seaweeds (Phaeophyceae) and diatoms (Bacillariophyta) [158]. Several 2019 reviews discuss use of fucochondins (sulfated polysaccharide mainly derived from brown seaweed) in lung cancer management. Brown algalike *Fucus vesiculosus*, *Turbinaria conoides*, *Saccharina japonica* (formerly *Laminaria japonica*) (Figure 8) are reported in inhibition of tumor migration and invasion, apoptosis induction, and inhibition of lung cancer cell progression respectively [159]. *Fucus distichus* subsp. evanescens (formerly *Fucus evanescens*), *Sargassum sp.* (Figure 9), and *Saccharina japonica* were reported to inhibit proliferation and metastasis and induce apoptosis in vitro [160]. *Undaria pinnatifida* acted on ERK1/2 MAPK and PI3K/Akt signaling; *Fucus distichus* subsp. evanescens (formerly *F. evanescens*) increased metastatic activity of cyclophosphamide and showed cytolytic activity of natural killer cells in 2 different studies, and *F. vesiculosus* decreased NF-κB in LLC [161]. U. pinnatifida was found to show average antitumor and superior efficacy against LLC in the review of Misra et.al, 2019 [162]. Sponge alkaloids from Aaptos showed potential in human lung adenocarcinoma A549, Fascaplysinopsis (Porifera) exerted an anti-proliferative and pro-apoptotic effect in lung cancer, and blue sponge *Xestospongia* showed apoptosis as well as stimulate anoikis in H460 lung cancer cells in review by Ercolano et.al, 2019[163]. The most common breast cancer type is the invasive ductal carcinoma accounting for 70-80% of all breast cancers diagnosed [164]. Brown seaweed fucoidan inhibited human breast cancer progression by upregulating microRNA (miR)-29c and downregulating miR-17-5p, thereby suppressing their target genes [165]. *Lophocladia sp.* (Lophocladiines), *Fucus sp.* (fucoidan), *Sargassum muticum* (polyphenol), *Pyropia dentata* (formerly *Porphyra dentata*) (sterol fraction), *Cymopolia barbata* (CYP1 inhibitors), *Agarophyton tenuistipitatum* (formerly *Gracilaria tenuistipitata*) *Gracilaria termistipitata* was found to be effective in breast cancer studies [166]. High Urokinase-type plasminogen activator receptor (uPAR) expression predicts for more aggressive disease in several cancer types, dietary seaweed may help lowering breast cancer incidence by diminishing levels of uPAR [167-168]. The tropical edible red seaweed *Kappaphycus alvarezii* (formerly *Eucheuma cottonii*) (Figure 10) is rich in polyphenols that exhibited strong anticancer effect with enzyme
Figure 7: *Haematococcus pluvialis* (Source: VERYMWL, Thailand)

Figure 8: *Saccharina japonica* (formerly *Laminaria japonica*) (Source: TCM Herbs)

Figure 9: *Sargassum* sp. (Source: POND5)
modulating properties [169]. Jazzara et al, 2016 concluded that \(\lambda\)-carrageenan (sulfated galactans found in certain red seaweeds) could be a promising bioactive polymer, as it showed a remarkable inhibitory effect on MDA-MB-231 (triple negative breast cancer cell line) cell migration [170-171]. Several studies support polyphenols, flavonoids, fucoidan, lutein/zeaxanthin, other seaweed alkaloids, peptides, tannins and polysaccharides in breast cancer management [159,160], [166], [132], [164], [172-210]. The number of deaths from colorectal cancer in Japan continues to increase, it is the third most common diagnosis and second deadliest malignancy for both sexes combined [211-212]. It has been projected that there will be 140,250 new cases of colorectal cancer in 2018, with an estimated 50,630 people dying of this disease [213]. High intake of red and processed meat and alcohol have been shown to increase the risk of colorectal cancer [214].

* U. pinnatifida * [159], [188], [215-221], * Sargassum hemiphyllum * (Ochrophyta, Phaeophyceae) [155], [225,226] have proven efficacy in this situation. Also, Algae derived astaxanthin [150], [227-232], fucoxanthin [233-237], lutein and zeaxanthin [238-241], polyphenols [242-246] have shown individual excellence.

Neuroprotection in Stroke, Alzheimer’s and Parkinsonism

Stroke is a leading cause for disability and morbidity associated with increased economic burden due to the need for treatment and post-stroke care. Acute ischemic stroke has enormous societal and financial costs due to rehabilitation, long-term care, and lost productivity. Between 2010 and 2030, stroke is expected to increase by more or less 60% in men and 40% in women [248]. Several studies reported neuroprotective role of astaxanthin and fucoxanthin [145], [248-268] in stroke prevention, Alzheimer’s, Parkinsonism and other neurodegenerative diseases. Barbalace et al, 2019 reported that marine algae inhibit pro-inflammatory enzymes such as COX-2 and iNOS, modulate MAPK pathways, and activate NK-kB [269]. Neorhodomela aculeata, Rhodomela confervoides (Rhodophyta) [26], [270], *Ecklonia cava* (Figure 11).
Figure 12: *Gracilaria tikvahiae* Red Seaweed (Source: Flickr)

Figure 13: *Chondrus crispus* - Carragheen or Irish Moss (Source: APHOTOMARINE)

Figure 14: *Hypnea valentiae* (Source: iNaturalist)
[271-275], Saccharina japonica (formerly Laminaria japonica) [276-281], Fucus vesiculosus [282-287], Sargassum spp. [288-295], Saccorhiza polyschides (Ochrophyta, Phaeophyceae) [283], Codium tomentosum [296], Ulva spp. (Chlorophyta), [256], [267], [293], [297-300], Ecklonia maxima (Ochrophyta, Phaeophyceae) [256], [301-303], Gracilaria spp. (Figure 12) [296], [304-311], Gelidium pristoides (Rhodophyta), [312,313], Halimeda incrassata (Chlorophyta) [314,315], Alsidium triquetrum (formerly Bryothamnion triquetrum) [316-318], Chondrus crispus (Figure 13) [319,320], Hypnea valentiae (Rhodophyta) (Figure 14) [298], Ecklonia stolonifera (Ochrophyta, Phaeophyceae) [321-323] were reported in several studies as neuro-protectives and suggested for use in neurodegenerative situations or are already in use in such conditions.

Alimentary Disorders

In the USA, the sales of prescription GI therapeutic drugs were $25 billion, the 10th leading therapeutic class in terms of sales [324], with $135.9 billion spent for GI diseases in 2015 [325]. Urbanization, western diet, hygiene, and childhood immunological factors are associated with IBD in Asia [326]. On the other hand, 14% of the global population is affected by IBS and 30% by constipation [327,328]. Na-alginate, has been used in the treatment of heartburn and GERD, although ESPGHAN/NASPGHAN Guidelines do not recommend its use in chronic GERD [329,330]. The [13C]-Arthrospira platensis (formerly Spirulina platensis) (Cyanobacteria) GEBT is an easy to measure of gastric emptying with accuracy [331-333]. Saccharina japonica (formerly Laminaria japonica) (Ochrophyta, Phaeophyceae) (vomiting, hemorrhoids, IBD, probiotic synergist) [334,335], Kappaphycus alvarensii (formerly Eucheuma cottonii) (Rhodophyta) (IBD, hepatoprotective, anti-food allergy) [336-338], Caulerpa mexicana (Chlorophyta) (Figure 15) (Gastroprotective, IBD) [339-341], Hypnea musciformis (IBD) (Rhodophyta) [336], [342], Fucus vesiculosus (gastroprotective, ulcerative colitis) [117], [343], Laminaria hyperborean, Laminaria digitatae (IBD)
Undaria pinnatifida (Ochrophyta, Phaeophyceae) (Figure 16) improves gut health and are reported for use in gut health modulation [346]. In addition, seaweed polysaccharides are atypical in structure to terrestrial glycans, and were found to resist gastric acidity, host digestive enzymes, and GI absorption [347]. Maternal seaweed extract supplementation can reduce both the sow fecal Enterobacteriaceae populations at parturition and piglet populations at weaning [348]. Also, seaweeds are good source of prebiotics that improve intestinal microbiota and may exert positive effects on IBD and IBS [349,350].

Thyroid Function

Seaweeds are a rich source of iodine and tyrosine [351], palatable and acceptable to consumers as a whole food or as a food ingredient, and effective as a source of iodine in an iodine-insufficient population [352]. In addition, daily diet should include thyroid boosting foods like those rich in iodine, the amino acid tyrosine, minerals like selenium, zinc, copper, iron, and various vitamins including, B2, B3, B6, C and E [353]. Edible seaweeds are rich in these vitamins and minerals [95]. Although high iodine intake is well tolerated by most healthy individuals, but in some people, it may precipitate hyperthyroidism, hypothyroidism, goiter, and/or thyroid autoimmunity [354]. Excess intake of iodine through seafood consumption is a suspected risk factor for thyroid cancer [355]. Also, some seaweeds are contaminated with arsenic, mercury, cadmium and other heavy metals that have a positive association with thyroid hormones in adults [356-360].

Analgesic and Anti-inflammatory Potential

Neuropathic pain estimates are 60% among those with chronic pain. Mild-to-moderate pain may be relieved by non-drug techniques alone [128]. 1g of brown seaweed extract (85% F. vesiculosus fucoidan) daily could reduce joint pain and stiffness by more than 50% [361,362]. Association between algae consumption and a lower incidence of chronic degenerative diseases is also reported for the Japanese [363]. Carrageenan has been widely used as a tool in the screening of novel anti-inflammatory drugs [364]. Among others, Pyropia vietnamensis (formerly Porphyra vietnamensis) [365,366], Kappaphycus alvarezi (formerly Eucheuma cottonii) [367], Dichotomaria obtusa (Rhodophyta) (Figure 17) [368], Cystoseira sedoides, Cladostephus spongiosumis, Padina pavonica (Figure 18) [369].

![Dichotomaria obtusa, Tubular Thicket Algae](reefguide.org)

![Padina pavonica](Source: Alchetron)
Ecklonia cava (due to phlorotannins) (Ochrophyta, Phaeophyceae) [370-372], Caulerpa racemosa (Chlorophyta) [373], Sarcodia ceylanica [374], Aactingrichia fragilis (Rhodophyta) [375], Dictyota menstrualis (Ochrophyta, Phaeophyceae) (Figure 19) [376], Gracilaria cornea [377], Gracilaria birdiae [378], class Phaeophyceae, Rhodophyta and Chlorophyta [379], Caulerpa curpressoides [380,381], Ulva lactuca (Chlorophyta) (Figure 20) [382], Sargassum swartzii (formerly Sargassum wightii) and Halophila ovalis (Tracheophyta) [383], Grateloupia lanceolatae (Rhodophyta) [384], Sargassum fulvellum and Sargassum thunbergii [385], Briareum excavatum (Octocoral) [386], Caulerpa racemosa (Chlorophyta) [387], Sargassum hemiphyllum (Ochrophyta, Phaeophyceae) [388], Laurencia obtusa (Rhodophyta) [389], Caulerpa kempfii [390], Caulerpa cupressoides (Chlorophyta) [391] are reported for their analgesic and anti-inflammatory properties.

Figure 19: Dictyota menstrualis (Source: flowergarden.noaa.gov)

Figure 20: Ulva lactuca, Sea Lettuce (Source: Addictive Reef Keeping)

Antimicrobial Properties

Rising antimicrobial resistance is a threat to modern medicine. Infections with resistant organisms have higher morbidity and mortality, are costlier to treat and estimated to cause 10 million deaths annually by 2050 with global economic loss $100 trillion [392-394]. Lu et.al, 2019 reported Saccharina japonica (formerly Laminaria japonica), Sargassum (Ochrophyta, Phaeophyceae), Gracilaria sp. and Pyropia dentata (formerly Porphyra dentata) (Rhodophyta) potentiated the activities of macrolides against E. coli [394]. Carragelose® (first marketed product from algae) has the ability to block viral attachment to the host cells and being effective against a broad spectrum of respiratory viruses [395]. Besednova et.al, 2019 reported that fucoids, carrageenans, ulvans, lectins, and polyphenols are biologically active compounds from seaweeds that target proteins or genes of the influenza virus and host components [396].
Other Health Issues

Walsh et al, 2019 reported osteogenic potential of brown seaweeds *Laminaria digitata* and *Ascophyllum nodosum* [398]. Seaweed contains several compounds with antioxidant properties (phlorotannins, pigments, tocoherols, flavonoids, polyphenols and polysaccharides) [399]. Antioxidant properties of *Fucus vesiculosus* and *Ascophyllum nodosum* (due to phlorotannins) [399], *Turbinaria conoides* (2H-pyranoids) [400], *Ulva clathrata* (Chlorophyta) (phenolics and flavonoid contents) [401], *Bifurcaria bifurcata* (Figure 21) (diterpenes eleganolone and eleganonal) [402], *Cystoseira* spp. (phenolic constituents) [119], *Sargassum siliquastrum* (Ochrophyta, Phaeophyceae) (phenolic compounds, ascorbic acid) [403], *Ulva compressa* (Chlorophyta) (phenolic contents) [404], *Saccharina japonica* (polysaccharides) and *Sargassum horneri* (Ochrophyta, Phaeophyceae) (phenolic contents) [405,406], *Halophila ovalis* (Figure 22) and *Halophila beccarii* (Tracheophyta) (flavonoids) [407,408], *Cystoseira sedoides* (Ochrophyta, Phaeophyceae) (mannuronic acid than guluronic acid) [369, [409,410], *Caulerpa peltata* (Chlorophyta), *Gelidiella acerosa* (Rhodophyta), *Padina gymnospora*, and *Sargassum wightii* (phenols and flavonoids) [411], *Ecklonia cava* (Polyphenols) [412,413], *Undaria pinnatifida* (Ochrophyta, Phaeophyceae) (phlorotannins) [414] are well reported. Most other medicinal effects are mainly due to presence of these antioxidants. Mesripour et al., 2019 reported antidepressant effects of *Sargassum plagyophylum* [415]. *Ecklonia bicyclis*, *Tribulus terrestris* (Magnoliophyta) improved sexual and ejaculation function and sexual QoL [416]. Chronic pain is often associated with sexual dysfunction, suggesting that pain can reduce libido [416]. However, red algae (especially sea moss/ *Gracilaria* spp.), *Hypnea musciformis* (Vermifuge), *Monostroma nitidum* (formerly *Porphyra crispata*) are known to have aphrodisiac properties [417-419]. Thrombotic diseases are reported to contribute to 30% early deaths globally [420]. *Ulva rigida* [421], *Udotea flabellum* (Chlorophyta) (Figure 23) [422].
Figure 23: *Udotea flabellum* (Source: Insta Phenomenons)

Figure 24: *Canistrocarpus cervicornis* (Source: Backyard Nature)

Figure 25: *Grateloupia elliptica* (Source: Papago.naver.com)
ulvans, and their oligosaccharides [380], Nemacystus decipienus, Undaria pinnatifida (Ochrophyta, Phaeophyceae) [423], Pyropia yezeoensis (formerly Porphyra yezeoensis) (Rhodophyta), Coscinoderma mathewsi (Porifera), Sargassum microanthum, Sargassum yezeoense, Canistrocarpus cervicornis (Figure 24), Dictyota menstrualis, Ecklonia Kurokumuroke, Ecklonia spp. (Ochrophyta, Phaeophyceae) [424] have shown anticoagulant and anti-thrombotic properties. He et.al, al, 2019 reported that seaweed consumption may be a dietary predictor of elevated MEP, MiBP, and ∑DEHP concentrations among pregnant women [425]. Urolithiasis affects approximately 10% of the world population and is strongly associated with calcium oxalate (CaOx) crystals. Gomes et.al, 2019 reported anti-urolithic effect of green seaweed Caulerpa cupressoides [426]. Grateloupa elliptica has the potential to treat alopecia via inhibitory activity against Malassezia furfur (formerly Pityrosporum ovale) (Fungi, Basidiomycota) [427]. Strong fungus-inhibitory effects of Ochtodes secundiramea and Laurencia dendroidea (Rhodophyta) extracts were observed Banana and Papaya during storage [428]. Marine macroalgae are a promising source of diverse bioactive compounds with applications in the biocontrol of harmful cyanobacteria blooms [429].

Table-1: Antimicrobial activity of different solvent extracts from seaweeds [397]

<table>
<thead>
<tr>
<th>Red Seaweed</th>
<th>Organisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alsidium corallinum</td>
<td>Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus</td>
</tr>
<tr>
<td>Ceramium rubrum</td>
<td>E. coli, Enterococcus faecalis, S. aureus</td>
</tr>
<tr>
<td>Ceramium virgatum</td>
<td>Salmonella enteritidis, E. coli, Listeria monocytogenes, Bacillus cereus</td>
</tr>
<tr>
<td>Chondrocanthus acicularis</td>
<td>E. coli, K. pneumoniae, E. faecalis, S. aureus</td>
</tr>
<tr>
<td>Chondracanthus canaliculatus</td>
<td>S. aureus, Streptococcus pyogenes</td>
</tr>
<tr>
<td>Chondrus crispus</td>
<td>L. monocytogenes, Salmonella abony, E. faecalis, P. aeruginosa</td>
</tr>
<tr>
<td>C. crispus</td>
<td>Pseudoalteromonas elyakovii, Vibrio aestuarianus, Polaribacter igestii, Halomonas marina, Shecanella putrefaciens</td>
</tr>
<tr>
<td>Ellisolandia elongata (formerly Corallina elongataelongata)</td>
<td>B. subtilis, S. aureus, E. coli, Salmonella typhi, K. pneumoniae, Candida albicans</td>
</tr>
<tr>
<td>Gelidium attenuatum</td>
<td>E. coli, K. pneumoniae, E. faecalis, S. aureus</td>
</tr>
<tr>
<td>Gelidium microtremus</td>
<td>V. parahaemolyticus, V. alcaligenes</td>
</tr>
<tr>
<td>Gelidium puchellum</td>
<td>E. coli, E. faecalis, S. aureus</td>
</tr>
<tr>
<td>Gelidium robustum</td>
<td>S. aureus, S. pyogenes</td>
</tr>
<tr>
<td>Gelidium spinulosum</td>
<td>E. coli, E. faecalis, S. aureus</td>
</tr>
<tr>
<td>Gracilaria dura</td>
<td>V. ordalii, V. alginolyticus</td>
</tr>
<tr>
<td>Gracilaria gracilis</td>
<td>V. salmonicida</td>
</tr>
<tr>
<td>Grateloupa livida</td>
<td>S. aureus, E. coli, P. aeruginosa</td>
</tr>
<tr>
<td>Gracilaria ornata</td>
<td>E. coli</td>
</tr>
<tr>
<td>Gracilaria subsecundata</td>
<td>S. aureus, S. pyogenes</td>
</tr>
<tr>
<td>Green Seaweed</td>
<td></td>
</tr>
<tr>
<td>Boodlea composita</td>
<td>V. harveyi, V. alginolyticus, V. vulnificus, V. parahaemolyticus, V. alcaligenes</td>
</tr>
<tr>
<td>Bryopsis pennata</td>
<td>V. vulnificus, V. parahaemolyticus</td>
</tr>
<tr>
<td>Caulerpa lentillifera</td>
<td>E. coli, Staphylococcus aureus, Streptococcus sp., Salmonella sp.</td>
</tr>
<tr>
<td>Caulerpa parvula</td>
<td>V. vulnificus, V. alcaligenes</td>
</tr>
<tr>
<td>Caulerpa racemosa</td>
<td>E. coli, S. aureus, Streptococcus sp., Salmonella sp.</td>
</tr>
<tr>
<td>Chaetomorpha aerea</td>
<td>Bacillus subtilis, Micrococcus luteus, S. aureus</td>
</tr>
<tr>
<td>Chaetomorpha linum</td>
<td>V. ordalii, V. vulnificus</td>
</tr>
<tr>
<td>Cladophora albida</td>
<td>V. harveyi, V. alginolyticus, V. vulnificus, V. parahaemolyticus, V. alcaligenes</td>
</tr>
<tr>
<td>Cladophora glomerata</td>
<td>V. fischeri, V. vulnificus, V. anguillarum, V. parahaemolyticus</td>
</tr>
<tr>
<td>Brown Seaweed</td>
<td></td>
</tr>
<tr>
<td>Chnoospora impexa</td>
<td>S. aureus, S. pyogenes</td>
</tr>
</tbody>
</table>
Marine Algae: An Extensive Review of Medicinal & Therapeutic Interests

Cladophora rupestris S. aureus, P. aeruginosa, V. harveyii, V. parahaemolyticus, V. alginolyticus
C. rupestris S. aureus, P. aeruginosa, V. harveyii, V. parahaemolyticus, V. alginolyticus
C. rupestris S. aureus, S. pyogenes, B. subtilis, E. coli, S. typhi, K. pneumoniae, C. albicans
Colpomenia sinuosa S. aureus, S. pyogenes, B. subtilis, E. coli, P. aeruginosa
Colpomenia tabulata S. aureus, S. pyogenes
Cystoseira ommundacea S. pyogenes
Cystoseira trinodis S. aureus, B. subtilis, E. coli, P. aeruginosa
Dictyopteris delicatula S. aureus, S. pyogenes
Dictyopteris undulata S. aureus, S. pyogenes
Dictyota dichotoma S. aureus, B. subtilis, E. coli, P. aeruginosa
Dictyota flabellata S. aureus, S. pyogenes
Dictyota indica S. aureus, B. subtilis, E. coli, P. aeruginosa
Dictyota sp. S. aureus, S. pyogenes
Ecklonia bicyclis (formerly Eisenia bicyclis) S. aureus, S. epidermidis, Propionibacterium acnes

Conclusion

Seaweeds are well-known for their exceptional capacity to accumulate essential minerals and trace elements needed for human nutrition, although their levels are commonly quite variable depending on their morphological features, environmental conditions, and geographic location. Food security, legislative measures to ensure monitoring and labeling of food products are needed. Being subject to environmental influences from their habitat, seaweeds also entail water-borne health risks such as organic pollutants, toxins, parasites, and heavy metals. Having in mind the serious environmental problems raised in coastal areas by urbanization and industrialization, the concentration of toxic elements in edible macroalgae is now a growing concern, mainly considering their increased consumption in a Western diet. Although many studies demonstrated their therapeutic value in various ailments, but most of them have been performed on experimental animals. Proper labelling is necessary along with instructions of the content, source and use. Furthermore, controlled human intervention studies with health-related end points to elucidate therapeutic efficacy are required.

Abbreviations

Monoisobutyl phthalate (MiBP), monoethyl phthalate (MEP); The molar sum of MEHHP and MEHOHP (ΣDEHP); mono(2-ethylhexyl) phthalate (MEHP); mono(2-ethyl-5-oxohexyl) phthalate (MEOHP); World Economic Forum (WEF); Ischemic Heart Diseases (IHDs); Food and Agriculture Organization of the United Nations (UN-FAO); Gastric Emptying Breath Test (GEBT); Low and Middle Income Countries (LMICs); Conjugated Linoleic Acid (CLA); State of Food and Agriculture (SOFA); Uncoupling protein-1 (UCP-1); Hemoglobin A1c (HbA1c); extracellular signal–regulated kinases (ERK); Inflammatory bowel disease (IBD); Angiotensin Converting Enzyme (ACE); Osteoarthritis (OA); Cytochrome P450 1 (CYP1); Mitogen-Activated Protein Kinases (MAPK); Cytochrome P450 1 (CYP1); Mitogen-Activated Protein Kinase (MAPK)

3-Kinase/Protein Kinase B (PI3K/Akt); Nuclear Factor Kappa-Light-Chain-Enhancer Of Activated B cells (NF-κB)

References

90. Johnson J. What are the benefits of seaweed? Medical News Today, 6 December 2018.

130. World Cancer Day.

Marine Algae: An Extensive Review of Medicinal & Therapeutic Interests

Marine Algae: An Extensive Review of Medicinal & Therapeutic Interests

258. Barros MP, Poppe SC, Bondan EF. Neuroprotective properties of
the marine carotenoid astaxanthin and omega-3 fatty acids, and
perspectives for the natural combination of both in krill oil. Nutrients.

effect of astaxanthin against glutamate-induced cytoxicity in
HT22 cells: Involvement of the Akt/GSK-3β pathway. Neuroscience.
2015;303:558-68. doi: 10.1016/j.neuroscience.2015.07.034

260. Ito N, Saito H, Seki S, Ueda F, Asada T. Effects of Composite Supplement
Containing Astaxanthin and Sesamin on Cognitive Functions in
People with Mild Cognitive Impairment: A Randomized, Double-
Blind, Placebo-Controlled Trial. J Alzheimers Dis. 2018;62(4):1767-
1775. doi: 10.3233/JAD-170969

261. Yamagishi R, Aihara M. Neuroprotective effect of astaxanthin against
rat retinal ganglion cell death under various stresses that induce

neuroprotection and reduces neuroinflammation in experimental
doi: 10.1016/j.jss.2014.05.029

oxidative stress and protection against early brain injury by
astaxanthin after experimental subarachnoid hemorrhage. J

H(2)O(2)-induced neuronal apoptosis via concurrently activating the
PI3-K/Akt cascade and inhibiting the ERK pathway. Food Nutr

Fucoscanhtin provides neuroprotection in models of traumatic brain
injury via the Nrf2-ARE and Nrf2-autophagy pathways. Sci Rep.
2017;7:46763. doi: 10.1038/srep46763

Carotenoid, Attenuates β-Amyloid Oligomer-Induced Neurotoxicity
Possibly via Regulating the PI3K/Akt and the ERK Pathways. Int J Biol

267. Barbosa M, Valentão P, Andrade PB. Bioactive compounds from
macrogala in the new millennium: implications for
doi: 10.3390/md12094934

An overview on neuroprotective effects of isothiocyanates for the
treatment of neurodegenerative diseases. Fitoterapia. 2015;106:12-
21. doi: 10.1016/j.fitote.2015.08.001

Anti-Inflammatory Activities of Marine Algae in Neurodegenerative

anti-inflammatory activities of the methanolic extract of
Neohordomela aculeata in hippocampal and microglial cells. Biol

effects of phlorotannins isolated from a brown alga, Ecklonia cava,
against H2O2-induced oxidative stress in murine hippocampal
doi: 10.1016/j.etap.2012.03.006

272. Kim JH, Lee NS, Jeong YG, Lee JH, Kim EJ, Han SY. Protective efficacy
of an Ecklonia cava extract used to treat transient focal ischemia
ach.2012.45.2.103

Neuromembrane Property of Phlorotannins from Ecklonia cava
on Aβ25-35-Induced Damage in PC12 Cells. Mar Drugs.
2018;17(1). doi: 10.3390/md17010007

of Fucoxanthin Extract from Ecklonia cava on Hydrogen Peroxide-
doi: 10.4014/jmb.1710.01.004

Neuroprotective mechanisms of dieckol against glutamate toxicity
through reactive oxygen species scavenging and nuclear factor-like
Mar;23(2):121-130. doi: 10.4196/kjpp.2019.23.2.121

276. Reid SNS, Ryu JK, Kim Y, Jeon BH. The Effects of Fermented Laminaria
japonica on Short-Term Working Memory and Physical Fitness in
the Elderly. Evid Based Complement Alternat Med. 2018;8109621.
doi: 10.1155/2018/8109621

277. Reid SNS, Ryu JK, Kim Y, Jeon BH. GABA-enrichedfermented Laminaria
japonica improves cognitive impairment and neuroplasticity in
scopolamine- and ethanol-induced dementia model mice. Nutr Res

polysaccharide fractions extracted from Laminaria japonica. Int J

of sulfated hetero/galctotucn polysaccharides on dopaminergic
ibiomac.2015.10.042

Hetero-Polysaccharides Protect SH-SY5Y Cells from H2O2-Induced
Aptosis by Affecting the PI3K/Akt Signaling Pathway. Mar Drugs.

Protects Dopaminergic Neurons by Enhancing the Mitochondrial
Function in a Rotenone-induced Rat Model of Parkinson’s Disease.

282. Alghazwi M, Smit S, Karpiniec S, Zhang W. Comparative study on
neuroprotective activities of fucoxanths from Fucus vesiculosus and
doi: 10.1016/j.etap.2012.03.006

effects of seaweed against 6-hydroxydopamine-induced cell death
on an in vitro human neuroblastoma model. BMC Complement

284. Jhamandas JH, Wie MB, Harris K, MacDonald D, Kar S. Fucoscanhtin
inhibits cellular and neurotoxic effects of beta-amyloid (A
Marine Algae: An Extensive Review of Medicinal & Therapeutic Interests

