Correcting Einstein:
The Conservation of Time
Paul T E Cusack *

#23 Park Ave, Saint John, NB E2J 1R2, Canada

Abstract
We hereby examine how Einstein’s Relativity is to be replaced by the new theory: Astrotheology. Principles of the conservation of Energy; time being Kinetic Energy, and the number of degrees of freedom are considered. Eigen vectors and eigen values are essential when studying Astrotheology. Astrotheology provides a superior way of looking at cosmology.

Keywords: Space; Time; Kinetic Energy; Eigenvector; Eigen value;

Introduction
Albert Einstein provided a revolutionary theory that was to supercede Newton’s. His theory persisted for over 100 years. However, there is a better way of looking at cosmology. It lies in the theory of Astro-Theology, Cusack’s Universe. Einstein’s idea that the speed of light is constant no matter what still holds Space and time are absolute however: Space is three dimensional, and time is K.E. Finally energy is proportional to the mass times the speed of light squared still holds. However, introducing the eigenvector and the eigen value alter Relativity dramatically. Space and time are absolute. We begin with the conservation of time.

The Conservation of Time
I figured out why Einstein was wrong in Relativity. Time is an eigenvector. It doesn’t change come what may in direction and magnitude. All the other variables can rotate, but time remains constant. I’ve shown elsewhere that time t=space s. Since the speed of light c=d/t=s/t=Constant.

Two observers with synchronous clocks may go anywhere at any speed but their eigenvectors don’t alter. Other vectors can rotate relative to any other observer, but the eigenvector doesn’t change one iota. When they meet up again, their individual paths could run afoul, but not their eigenvector of time; their clocks. They both age the same totally at varying rate of speed. This is where Einstein was wrong.

Put another way, two observers with synchronous clocks start out with zero Potential energy relative to each other. As they take different paths, their P.E. and K.E. changes. But when they come back together; their P.E. relative to each other is the same. By the principle of the Conservation of Energy, their K.E. (time) must be the same.

There is no doppler effect for light because light is a reaction with the Ether. The ionic bond of BeCl2 is broken.

Eigenvector
\[
\sin \theta = \frac{s}{t} = \frac{E}{m} = \sin \theta
\]

But we know that
\[
\sin^2 \theta + \cos^2 \theta = 1
\]

\[
\cos^2 \theta = 1 - \sin^2 \theta = \text{Mom.}
\]

\[
c = \sin^2 \theta = \frac{60}{1 - \sin^2 60^\circ}
\]

\[
[1 - \sin^2 \theta] c = \sin^2 \theta
\]

[1 - \sin^2 \theta] csc \theta = \sin^2 \theta

*Corresponding author email: St-michael@hotmail.com
Correcting Einstein: The Conservation of Time

Another point Einstein got wrong was in having too many degrees of freedom. The eigenvalue, \(c=3m \), locks down energy, time, and space. Einstein had these free floating. They are not free floating. The eigenvalue locks in to determine that energy, time and space must fluctuate together.

space-time-mass-velocity are conserved.

\[
\sin^2 \theta + \sin \theta - \frac{1}{\sin \theta} = 0
\]
\[
x^2 + x - c = 0
\]
\[
\left(\frac{\sqrt{5}}{2} \right)^2 + \left(\frac{\sqrt{5}}{2} \right)^2 - 3 = E
\]
\[
\frac{3}{4} - 0.866 = E
\]
\[
116 - c = E
\]
\[
M - c = E
\]
\[
\frac{\sqrt{5}}{2} \times \sqrt{5} = \left[\frac{1}{2} c \right]
\]
\[
\frac{3}{2} \times 2c
\]
\[
3c = c^2
\]

\(c \) = Eigenvalue for the conservation of space, time, mass and velocity.

Now:
\[
dt = Mc^2 c
\]
\[
\frac{dt}{Mc^3} = \frac{st}{c^3} = \frac{t^2}{c^3}
\]
\[
M = \frac{t^2}{c^3} = \frac{\sqrt{(3)}}{3^3}
\]
\[
M = \frac{E}{c^2}
\]
\[
M = \frac{E}{c^2}
\]
\[
\left[\frac{\sin \theta \sqrt{3}}{\cos \theta v^2} \right] = c
\]
\[
\frac{\sqrt{5}}{2} \times \sqrt{5} = c
\]
\[
\frac{1}{2} v^3 = c
\]
\[
Where \(\theta = 60^\circ \)
\]
\[
v^2 = 1, v = 1
\]
\[
M = E \cdot t = |E| |v| \cos \theta
\]
\[
M = E \cdot t = |E| |v| \cos \theta
\]
\[\frac{1}{9} = \cos \theta \]
\[\theta = 83.62^\circ \]
\[P.E = M c^2 \]
\[\frac{P.E}{c^2} = M \]
\[K.E = \frac{1}{2} M v^2 \]
\[K.E = \frac{1}{2} \left(\frac{P.E}{c^2} \right) v^2 \]
\[P.E = \frac{1}{2} K.E. \]
\[P.E + K.E. = 1 \]
\[P.E. + \frac{1}{2} P.E. = 1 \]
\[1.5 P.E. = 1 \]
\[P.E. = \frac{1}{1.5} = \frac{2}{3} = G \]
\[P.E. = G \]
\[P.E = M g h \]
\[g h = c^2 \]
\[P.E. = G = M c^2 \]
\[M g h = G = M c^2 \]
\[= M c^2 \]
\[\cos \theta G = M c^2 \]
\[\cos \theta = \frac{M}{G} \]
\[\theta = 60^\circ \]
\[\frac{1}{2} = \frac{M}{\frac{3}{2}} \]

\[M = \frac{2 \times 3}{2} = \frac{1}{c^2} \]

\[M = \frac{E}{c^2} \]
\[E = M c^2 \]

\[\cos \theta = \frac{M}{G} \]
\[\theta = 60^\circ \]
\[\left(\frac{2}{3} \right) \left(\frac{1}{2} \right) = M \]
\[\frac{1}{3} = M \]
\[= \frac{1}{c} \]
\[M = \frac{1}{3} \]

\[\cos \theta = \frac{1}{\cos ec \theta} \]

\[\cos \theta = \sin \theta \]

Conclusion

Einstein's Relativity was partially correct. E=Mc^2 is true. But the Eigen vector and Eigen value tether energy time and space. There is no Doppler effect for light because light is a reaction with the Ether. The ionic bond of BeCl2 is broken. Another point Einstein got wrong was in having too many degrees of freedom. Einstein's Theory of Relativity is incorrect. Astrotheology rules now.

References