Processing and Properties of Nanocarbon Reinforced Iron Nanocomposites by Self-Catalytic Propagation High-Temperature Synthesis for Cancer Therapy

B. Bendjemil1,2*, J. Messadi1, A. Lankar3, D. Vrel4

1LASEA, Department of Chemistry, Faculty of Sciences, University Badji Mokhtar, B.P. 12 Annaba, 23000, Algeria
2University of 8 Mai 1945 Guelma, 24000 Guelma, Algeria
3Laboratoire Central de Cytologie Pathologiques CHU Annaba, Annaba, 23000, Algeria
4LSPM, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France

Abstract

Combustion synthesis in a self-catalytic propagation High-temperature Synthesis mode was used with the aim to synthesize 1D carbon nanostructures, by the sodium Azide NaN₃ reduction of the Teflon PTFE (CF)n, either in argon or in air, at ambient pressure (0.1 MPa) or at 1 MPa. In the same time, several possible catalysts were tried, such as Fe(CO)₅, Co(CO)₅, Ni (CO)₅ powders. Through the presence of NaF in the product, the deep reduction of PTFE is shown. In order to produce fullerences and carbon nanotubes, On the other hand, we obtain nanocarbon reinforced iron nano-composites by nanocarbon encapsulated iron metal nanoparticles in nanocarbon coke were obtained in our samples with high yield, opening the process to new possible and nanobiomedical applications.

Keywords: PTFE; 1D nanostructures; Nanocarbon encapsulated metal nanoparticles; Nanocomposites; Nano-biomedical applications

Introduction

Among the recent progress in carbon chemistry, the discovery of nanostructures based on graphitic planes, such as fullerenes [1,2], carbon nanotubes [3] and graphene [4-6] are of prime interest. The specific properties of these materials are the subject of intensive research, since they may be significantly modified by the presence of foreign atoms [7,8], either through chemical bonds with the carbon, or through encapsulation. Also, the structure of single graphitic planes, either in single wall CNTs or, more specifically of graphene induces specific electric properties that make these semiconductors of prime interest for high speed electronics [9,10], and their synthesis [11-13] and their properties [14-16] are the subject of intensive research.

Our goal is here to produce carbon-based nanostructures encapsulating metal or carbide nanopowders and/or nanorods. However, it the most known method to produce graphene is through deposition on silicon carbide [17], it is much more difficult to synthesize on metals, as carbon would dissolve into the metal as a solid solution, or, at higher concentration, produce carbides. To avoid such a disastrous side effect, the fast, high-temperature stage of the carbon layer must be followed by a rapid cooling down. Apart from the Huffman-Krätschmer arc process [18], SHS reactions are a promising way to produce such hetero-structures [19-32,33-35]. Among the other possible synthesis processes, one could also cite RF plasma torch [36], magnetron and ion beam co-sputtering [37], high temperature annealing of the mixtures of carbon-based materials and metal containing powders [38], catalytic carbonization process [39,40,41], and laser induced pyrolysis [42].The very idea of encapsulating metals or metal carbides inside nanotubes or fullerene-like structures partly comes from the very specific magnetic properties in the nanoscale range, the carbon layer ensuring the particles to be stable, resistant, harmless, with many possible industrial applications [21]

Experiment

SHS process in PTFE /NaN₃/Fe(CO)₅ systems

As a source of carbon, Teflon (PTFE from Sigma–Aldrich, purity >99%, CaCO₃ from Sigma-Aldrich, >99%) were reduced using NaN₃ powder (Sigma–Aldrich, >99%). The blends were prepared in a high energy Fritsch planetary ball mill (Pulverisette 6) using a rotation speed within the range 400–600 rpm for a duration of 30-45 min to assure high homogenization, fractioning, and cold welding of the particles. In order to avoid oxidation during alloying, the ball mill was filled with high purity argon gas. The powders were then mixed with Fe(CO)₅ powders (~325 mesh), used as catalysts and not compacted. Finally, reactions were carried out under reactive (air) or neutral atmosphere (argon) in a high-pressure reactor, in the self-propagating High-temperature Synthesis (SHS) mode (Figure 1), at an initial
Table 1: Characteristics of the reacting mixtures.

<table>
<thead>
<tr>
<th>Expected reaction</th>
<th>Composition, w%</th>
<th>Catalyst (wt %)</th>
<th>D_S°, J. kg$^{-1}$K$^{-1}$</th>
<th>D_H°, kJ.kg$^{-1}$</th>
<th>D_G°, kJ.kg$^{-1}$</th>
<th>T_a, K</th>
<th>Q_r, kJ.kg$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2CF + 2NaN_3 = 2NaF + 2C + 3N_2$</td>
<td>CF/NaN$_3$ (67.8/32.2)</td>
<td>947</td>
<td>-4005</td>
<td>-4288</td>
<td>3125</td>
<td>3700</td>
<td></td>
</tr>
<tr>
<td>$2CF + 2NaN_3 = 2NaF + 2C + 3N_2$</td>
<td>CF/NaN$_3$ (67.8/32.2)</td>
<td>Fe (CO)$_5$ (10)</td>
<td>2007</td>
<td>-3513</td>
<td>-4111</td>
<td>2175</td>
<td>3100</td>
</tr>
</tbody>
</table>

In order to remove non coated iron or carbides, the samples have to be boiled in 2M HCl (24 h), and then washed in distilled water and subsequently in ethanol and annealed in dry air atmosphere at 350K. In order to remove amorphous carbon, the chemical oxidation by KMnO$_4$ dissolved in 50% sulfuric acid could be used. Again the sample has to be washed thoroughly in distilled water and annealed in dry air atmosphere.

Results and Discussions

Figure 2 presents the X-ray diffraction patterns and electron diffraction (Figure 3) of the products obtained after reaction of the systems PTFE/NaN$_3$ with and without Fe(CO)$_5$. From this figures, we observe the presence of nanocrystalline NaF, which is a proof that a reaction reducing at least partially the PTFE occurred, of various organic materials, fullerenes and of carbon in the form of 1D nanostructure and remaining CO$_2$ from the catalyst. Finally, it must be pointed out that our results, even when fiber-like products are not dominant, is capable of producing encapsulated products, would it be reduced metals [Fe], as observed by HRTEM, Figure 3, from the sodium Azide-induced reduction of PTFE in the presence of iron catalyst in the form of gas phase Fe(CO)$_5$. A good adherence of the particle with its graphitic surroundings is observed, although there obviously is a significant growth of this graphitic layer during the reaction with high yield. The inset (Figure 3) represented the electron diffraction of the nanocarbon coke and iron nanocrystallite encapsulated. We have obtained a nanocarbon reinforced metallic matrix nanocomposite in core shell nanostructures.

Acknowledgements

The authors wish to thank Prof. Mark Monthieux from the CEMES-Toulouse for his help during HRTEM investigations.
Figure 2: XRD pattern of the combustion products obtained from the reacting mixtures: (1) PTFE/NaN3 without metal catalysts, (2) PTFE/NaN3 with Fe(CO)5 catalyst. All experiments were performed under 0.1 MPa Argon.
Figure 3: HRTEM represented metallic nanoparticle encapsulated in core shell nanocarbon nanostructure forming a metallic matrix nanocomposite, without and with catalyst Fe(CO)₅, from top to bottom with electron diffraction (ED).
References

