Case Based Discussion: Hantavirus Infection Presenting as Pulmonary Syndrome in an Immunocompetent Adult Male

Pradeep Kumar Vyas1*, Vidyadhara Lakkappan1, Rajesh Uchil1, Suhas Thorat1, Vijay Khatri1

1D1 Holy Family Hospital, Dept. of Critical Care Medicine, St. Andrews Road Bandra (West) Mumbai –India 400050

Abstract

Hantaviruses are rodent-borne virus infection manifested as hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome [1]. HCPS is a severe, fatal respiratory disease caused by infection with hanta viruses. Anyone who comes in contact with rodents that carry hanta-viruses is at risk of HCPS. Rodent infestation in and around the home remains the primary risk for hanta-virus exposure. Clinical presentation of hanta-virus infections is not very much clear, sero-conversion and rising anti-hantavirus IgG titers were taken as evidence. Here we present a case of a 46 years old male diagnosed to have hanta virus pulmonary syndrome treated successfully.

Key words: Hanta Virus; Hfrs; Hps; Hcps; Ards; Haemarrhagic Fever.

Introduction

Hantavirus are members of bunya virus family. This group was first identified as causing hemorrhagic fever with renal failure. Hantavirus pulmonary syndrome became more prominent when it was first described in USA.

Epidemiology

Hantavirus spread from mammals to mammals by exposure to aerosolized faeces, infected urine or other body secretions. It has been found in rodents and other species in the world. Hemorrhagic fever with renal failure is the most common presentation of hanta-virus. In USA the most notifiable hantavirus is Sin-Nombre virus which is associated with severe pulmonary syndrome. It is found in 10-80% of deer mice mostly in rural regions. Spread is from rodents to humans through contact with rodent habitat.

Microbiology

Hantavirus are spherical in particles 80-120 nm in diameter has an envelope contains two glycoproteins which encloses three nucleocapsids. These nucleocapsids consists three separate strands of RNA, RNA dependent RNA polymerase and two nonstructural proteins.

Pathogenesis

In HFRS and HCPS the primary lesion is leakage of plasma and erythrocytes through the vascular endothelium. In HFRS the kidneys are affected with hemorrhagic necrosis, while in HCPS the lungs are affected.

Clinical Findings

HPS starts with a prodrome of fever, headache, myalgia, and gastrointestinal symptoms lasted for 4-5 days, followed by cough and dyspnea associated with tachycardia, tachycardia and hypotension. The respiratory symptoms may progress to ARDS and respiratory failure. HPS should be suspected in young healthy subjects who presents with fever; ARDS and history of exposure to rodents.

Laboratory investigations

There are no specific laboratory finding in HPS, but hemoconcentration (due to vascular leak), leukocytosis with left shift, abnormal or raised lymphocytes, thrombocytopenia, prolonged PTT in more severe cases and progressing worsening of lung function.

Radiology

Diffuse bilateral interstitial pulmonary infiltrates present in HPS.

Differential diagnosis

Acute severe pneumonia of various etiology must be differentiated specially Influenza-A virus, Legionella spp, Chlamydia pneumoniae or Pneumocystis jiroveci have similar presentation but the epidemiology, age and other factors can provide clue to the diagnosis. ARDS caused by other etiology, cardiopulmonary oedema are other differential diagnosis.

Complications

Acute respiratory failure and severe lung impairment of lung function and pulmonary disability.

Diagnosis

Serology-IgM specific assays are the main method to diagnose active infection. Seroconversion or a fourfold increase in IgG antibody is useful for recent infection.

Treatment

There is no specific treatment but Ribavirin has been used to treat HPS but its efficacy is not established. Supportive therapy for ARDS is essential for survival. Immunotherapy has shown that administration of human neutralizing antibodies during acute
phases of Hantavirus might prove effective. A strong neutralizing antibody could effectively reduce the presence of the virus as well as promote recovery. However no published reports of controlled clinical trials except for studies done on mice, hamsters, and rats have been shown.

Prognosis

is poor 30-50% mortality.

Prevention and control

The disease is prevented by interrupting contact between humans and rodents. Rodent control also decreases transmission. Vaccine : There is no commercially available vaccine that is effective for hantavirus. A vaccine known as Hantavax has been under study since 1990. As of 2016, the development is in clinical phase 3 trial stage.

Case History

A 34-year-old male non-smoker presented with history of fever cough, breathlessness for 2 days. He was conscious, dehydrated, febrile, tachycardic, tachypnoea, icteric, and pale. Respiratory examination revealed bilateral crackles and scattered wheez, with hepato-splenomegaly and oliguria, no bleeding escher. No exposure history or contact with rodents. Investigations revealed normal haemogram with mildly raised liver enzymes, serum bilirubin and serum creatinine. X- chest shows bilateral infiltration (Fig-1). ABG mild hypoxaemia. Meropenem and Clarithromycin, and other symptomatic treatment started. Next day he had worsening breathlessness requiring NIV support. His routine investigations shows gradually increasing trend of WBC, low hemoglobin and platelets. Widal dengue NS1, IgM, malaria,H1N1 and Leptospira IgM were negative. HBsAg, HCV, HIV1 and 2 were non reactive. Hantavirus IgM and IgG both were positive.X-ray chest shows worsening infiltration (Fig-2,3,4). Next day early morning patient had episode of haemoptysis, in view of respiratory distress and hypoxemia he was intubated and put on mechanical ventilatory and inotropic support. X-ray chest(Fig 5,6) showing worsening infiltrates. ET secretion culture were positive for Klebsiella pneumoniae resistant to Clarithromycin and Meropenem therefore antibiotics escalated to Colistin and Levofloxacin. Patient gradually improved so on 7th day inotropic support was stopped. Subsequently WBC and creatinine level came to normal, X-ray chest improved, so patient extubated on 10th day in view of hemodynamic stability and satisfactory X-Ray chest and ABG.
Case Based Discussion: Hantavirus Infection Presenting as Pulmonary Syndrome in an Immunocompetent Adult Male

Copyright: © 2020 Pradeep Kumar V, et al.

Discussion

HPS is a rare respiratory syndrome with a case fatality rate of 30-50% [2]. It results from inhalation of aerosolized viral particles and subsequent infection of endothelial cells, resulting in capillary leakage, which in turn leads to the clinical features and laboratory abnormalities [2,3,4,5,8]. Incubation period is 4-33 days. There is an early phase of fever with nonspecific symptoms like headache, nausea, anorexia, diarrhea, abdominal pain, and malaise [1] and a late or cardio-pulmonary phase with breathlessness leading to respiratory distress and failure, diffuse bilateral pulmonary infiltrates, hypoxia, hemodynamic instability, and shock, which can worsen over 24 to 48 hours. The diagnosis of HPS suspected on the symptoms, history of contact with rodents or exposure to areas where rodents live, lack of an alternative diagnosis, and/or laboratory tests that show characteristic changes. Immediate aggressive management required due to rapid progression.

Blood examinations [8]: reveal hemoconcentration, raised and abnormally enlarged WBC (atypical lymphocytes), absence of myeloid toxic changes, increased immunoblasts on smear and thrombocytopenia. Hepatic transaminase values mildly elevated, but serum LDH is markedly increased. A mild elevation of the activated partial thromboplastin time with a normal level of fibrinogen. Disseminated intravascular coagulation develops when the concentration of fibrinogen begins to fall. The development of lactic acidosis, combined with rapid respiratory deterioration, usually indicates death within 1-2 days. The diagnosis of HPS is confirmed when laboratory tests reveal the presence and/or increased level of Hantavirus IgM and/or a rising IgG titer.

Imaging Studies [11]

The chest radiograph typically shows a pattern of no cardiac pulmonary edema, cardiac silhouette is not enlarged, perihilar haziness (shaggy heart sign) is characteristic. Virtually all patients have interstitial edema, which manifests radiologically as peribronchial cuffing or Kerley B lines. Pleural effusions are common. The case under discussion presented following an incubation period of 4-5 days, with fever and typical laboratory and radiological abnormalities which progressed to hypoxic respiratory failure requiring cardio-respiratory and ionotropic support. Patient improved symptomatically and radiologically after active management in ICU with appropriate antibiotics fluids and other supportive treatment.

Conclusion

The emerging viral disease HFRS and HCPS are a cause of global concern. Humans are accidental hosts and get infected by aerosols generated from contaminated urine, feces and saliva of infected rodents. Flu-like signs and symptoms in its early stages, which is difficult to distinguish from influenza, pneumonia or other viral infections. After 4 to 10 days more serious signs and symptoms appear with cardio-respiratory collapse, which is life-threatening. Serological investigation of patients with pyrexia revealed presence of anti-hantavirus IgM antibodies. The case under discussion presents typical signs and symptoms of hantavirus infection confirmed serologically and treated successfully.

Conflict of interest

None to declare.

Acknowledgement

Our sincere thanks to Executive Director Sister Lucin. EX. Medical Director Dr. Armeeda Fernades, Medical Director Dr. Niraj Uttamani, Asst. executive Director Dr.(Sister) Beena, Medical Suptd. Dr. M. Methias. ICU “B” wing staff and Radiology department for the kind help provided in preparing this manuscript.

References

