Robotic radical cystectomy - revision and resection: an evolution in operative technique and platforms

Goonewardene SS1*, Persad R2, Gillatt D3
1The Royal Free Hospital and UCL Partners, London, UK
2North Bristol NHS Trust, Bristol, UK
3McQuarrie University, Sydney, Australia

Indocyanine green (ICG) fluorescence technology has also been used to delineate bowel perfusion. The optimal point of transaction can be marked under white (visible) light followed by intravenous injection of 6-8 mg of ICG [7]. The bowel is then visualized via near infrared laparoscopy and the point of transaction of the proximal is revised based on optimal bowel perfusion. This demonstrates the feasibility and advantages of the use of fluorescence imaging during creation of anastomosis; the advantages of endoscopic imaging to delineate integrity of the anastomosis as well the technique with regards to creating the anastomosis [7]. This can be used as part of cystectomy, when forming the conduit. To take this one step further, it can also be used, to assess the vasculature of the ileal conduit segment.

In conclusion, we have another ‘pair of eyes’ to enable us to conduct a safe controlled resection, with good vascular control, and which also allows us to conduct as safe anastomosis at the most precise location.

Robotic surgery has been used with success for ileal conduit revision with repair of ureteral stenosis [1]. Five tracers can be used for the 4 arms of the Si da Vinci robot in a 4-arm approach. Estimated blood loss was minimal (50 ml) [1]. There were no perioperative complications after this procedure. At 3 months of follow-up, the patient remained complication-free [1]. This demonstrated redo surgery is not an easy procedure due to postoperative adhesions and anatomical distortion. Robotic surgery is precise for dissection of adhesions and robotic suturing. Re-do surgery using a robot, which is a complicated procedure is the way forward.

Application of robotic surgery has also been used to manage a robotic cystectomy with conduit diversion [8]. A ureteroneal anastomotic stricture was treated robotically. A robotic uretero ileal anastomosis revision was performed through 3 robotic ports (12 mm, 8 mm, 8 mm) at a new site on the conduit using interrupted sutures with bowel mucosal eversion [8]. There has been no recurrence of stricture after six months.

Again, this demonstrates successful use of robotics in complication revision. Even though the learning curve can
be difficult for a surgeon, totally intracorporeal RARC with intracorporeal neobladder is a complex procedure, but it can be performed safely, with a structured approach, at a high-volume established robotic surgery centre without compromising perioperative and pathological outcomes during the learning curve for surgeons [9].

Postoperative bleeding is a known risk of any surgery. Although this risk is recognized, there is limited characterization of the rate of this occurrence in laparoscopic and robotic surgery [10]. Bleeding requiring re-operation is a recognized rare complication of minimally invasive surgery, even in experienced hands [10]. None of the patients post robotic prostatectomy required transfusion. All reoperations occurred within the first 24 hours postoperatively and indications for reoperation included hemodynamic instability in all cases, but this can be conducted robotically with success.

It has been demonstrated that robotic surgery is clearly an advantage technique (easy manoeuvring, comfortable and ergonomic position for the surgeon, 3D visualization and short learning curve) [11]. Robotic revision surgery is a challenging but feasible procedure in well-selected patients. Appropriate tracer and patient positioning is crucial to facilitate this surgery. Adhesiolysis can also be conducted robotically, with the advantage of extended instruments for greater access.

In conclusion, this minimally invasive procedure is facilitated by the use of the robotic platform and advances in robotic technology. An experienced robotic team and mentor can impact the learning curve of a new surgeon in the same centre resulting in decreased complication rates [9].

References


