2Department of Physics, Annamalai University, Annamalai nagar, Tamil Nadu, India-608 002.
3Centre for Functionalized Magnetic materials (FunMagMa), Immanuel Kant Baltic Federal University-236000, Kaliningrad, Russia.
Keywords: FT-IR; FT-Raman; TED; NBO; Naringin;
Since the Naringin flavonoid having a wide application in above-mentioned fields, we investigate the structure geometry, vibrational spectra, Frontier Molecular Orbitals (FMOs), inter and intramolecular interactions by experimental and computation methods such as FT-IR, FT-Raman, UV-Visible spectra, DFT and Time dependent-DFT calculations. To the best of our knowledge, there is no such an article being published till now.
It should be noted that Gaussian 03W package able to calculate the Raman activity. The Raman activities were transformed into Raman intensities using Raint program by the expression [14]:
Zhang et al. observed the C=O and C-O bond lengths are about 1.235 and 1.427 Å, respectively for 5, 6, 7, 4’-tetramethoxy isoflavone [17]. These observed values are in line with the calculated values (C4=O14: 1.243 and C8-O15: 1.337Å) of Naringin molecule. Moreover, there is a shrink in bond length of C8-O15 due to delocalization of π-electron from C4=O14. On comparing the C-C bond length in ring D, E with ring A, B and C are higher (~1.5 Å) due to the boat form of ring D and ring E. In ring A, the angle of C8- O15-H16 and C3-C8-C10 are about 106.52º and 120.74º respectively. These angles are negatively deviated from the angles of C24- O27-H28 (109.21º) and C22-C24-C20 (119.78º) is due to the electron localized in ring E. The calculated bond lengths, bond angles and dihedral angles are listed in Table S1 (Supporting information).
Parameters |
B3LYP/ |
Exp. |
Parameters |
B3LYP/ |
Exp. |
Bond lengths (Å) |
|
|
Bond length Contd… |
|
|
C1-C5 |
1.533 |
|
C30-O40 |
1.427 |
|
C1-O13 |
1.447 |
1.376 |
C30-H59 |
1.094 |
|
C1-C17 |
1.509 |
1.467 |
C31-C33 |
1.555 |
|
C1-H73 |
1.100 |
|
C31-O38 |
1.424 |
|
C2-C3 |
1.420 |
1.386 |
C31-H64 |
1.095 |
|
C2-C7 |
1.385 |
1.388 |
C32-C33 |
1.544 |
|
C2-O13 |
1.361 |
1.365 |
C32-O34 |
1.442 |
|
C3-C4 |
1.447 |
1.449 |
C32-C54 |
1.521 |
|
C3-C8 |
1.424 |
1.406 |
C32-H66 |
1.097 |
|
C4-C5 |
1.516 |
1.455 |
C33-O36 |
1.428 |
|
C4-O14 |
1.243 |
1.238 |
C33-H65 |
1.095 |
|
C5-H9 |
1.098 |
|
O36-H37 |
0.974 |
|
C5-H68 |
1.093 |
|
O38-H39 |
0.977 |
|
H6-C7 |
1.083 |
0.930 |
O40-C41 |
1.443 |
|
C7-C11 |
1.404 |
1.378 |
C41-C42 |
1.536 |
|
C8-C10 |
1.398 |
1.364 |
C41-O46 |
1.394 |
|
C8-O15 |
1.337 |
1.355 |
C41-H47 |
1.095 |
|
C10-C11 |
1.398 |
1.399 |
C42-C43 |
1.529 |
|
C10-H12 |
1.081 |
0.930 |
C42-O48 |
1.418 |
|
C11-O35 |
1.368 |
|
C42-H63 |
1.100 |
|
O14-H16 |
1.685 |
|
C43-C45 |
1.550 |
|
O15-H16 |
0.995 |
0.910 |
C43-O50 |
1.422 |
|
C17-C18 |
1.399 |
1.389 |
C43-H62 |
1.101 |
|
C17-C19 |
1.400 |
1.392 |
C44-C45 |
1.539 |
|
C18-C20 |
1.393 |
1.383 |
C44-O46 |
1.437 |
|
C18-H21 |
1.085 |
0.930 |
C44-H60 |
1.100 |
|
C19-C22 |
1.391 |
1.377 |
C44-C69 |
1.519 |
|
C19-H23 |
1.087 |
0.930 |
C45-O52 |
1.424 |
|
C20-C24 |
1.400 |
1.385 |
C45-H61 |
1.099 |
|
C20-H25 |
1.088 |
0.930 |
O48-H49 |
0.978 |
|
C22-C24 |
1.399 |
1.376 |
O50-H51 |
0.970 |
|
C22-H26 |
1.085 |
0.930 |
O52-H53 |
0.966 |
|
C24-O27 |
1.365 |
|
C54-O55 |
1.412 |
|
O27-H28 |
0.966 |
|
C54-H57 |
1.103 |
|
C29-C30 |
1.549 |
|
C54-H58 |
1.095 |
|
C29-O34 |
1.410 |
|
O55-H56 |
0.968 |
|
C29-O35 |
1.412 |
|
C69-H70 |
1.095 |
|
Bond lengths (Å) |
|
|
Bond lengths (Å) |
|
|
C29-H67 |
1.096 |
|
C69-H71 |
1.092 |
|
C30-C31 |
1.534 |
|
C69-H72 |
1.093 |
|
Bond Angles (˚) |
|
|
Bond Angles (˚) |
|
|
C5-C1-O13 |
109.96 |
120.85 |
C17-C19-C22 |
121.24 |
|
C5-C1-C17 |
113.40 |
128.80 |
C17-C19-H23 |
119.67 |
|
C5-C1-H73 |
108.54 |
|
C22-C19-H23 |
119.09 |
|
O13-C1-C17 |
108.05 |
111.15 |
C18-C20-C24 |
120.00 |
|
O13-C1-H73 |
107.39 |
|
C18-C20-H25 |
120.02 |
|
C17-C1-H73 |
109.33 |
|
C24-C20-H25 |
119.98 |
|
C3-C2-C7 |
121.19 |
121.70 |
C19-C22-C24 |
119.62 |
|
C3-C2-O13 |
121.41 |
122.03 |
C19-C22-H26 |
121.37 |
|
C7-C2-O13 |
117.40 |
116.03 |
C24-C22-H26 |
119.01 |
|
C2-C3-C4 |
120.71 |
119.12 |
C20-C24-C22 |
119.78 |
|
C2-C3-C8 |
118.46 |
118.52 |
C20-C24-O27 |
122.78 |
|
C4-C3-C8 |
120.66 |
122.33 |
C22-C24-O27 |
117.44 |
|
C3-C4-C5 |
115.78 |
115.93 |
C24-O27-H28 |
109.21 |
|
C3-C4-O14 |
123.06 |
|
C30-C29-O34 |
112.11 |
|
C5-C4-O14 |
121.13 |
|
C30-C29-O35 |
107.21 |
|
C1-C5-C4 |
111.08 |
122.03 |
C30-C29-H67 |
109.79 |
|
C1-C5-H9 |
109.46 |
|
O34-C29-O35 |
112.95 |
|
C1-C5-H68 |
110.97 |
|
O34-C29-H67 |
104.98 |
|
C4-C5-H9 |
108.41 |
|
O35-C29-H67 |
109.80 |
|
C4-C5-H68 |
109.43 |
|
C29-C30-C31 |
108.12 |
|
H9-C5-H68 |
107.38 |
|
C29-C30-O40 |
112.41 |
|
C2-C7-C6 |
121.16 |
|
C29-C30-H59 |
108.86 |
|
C2-C7-C11 |
118.76 |
118.72 |
C31-C30-O40 |
107.36 |
|
C6-C7-C11 |
120.06 |
|
C31-C30-H59 |
110.16 |
|
C3-C8-C10 |
120.74 |
120.20 |
O40-C30-H59 |
109.91 |
|
C3-C8-O15 |
120.54 |
121.20 |
C30-C31-C33 |
108.94 |
|
C10-C8-O15 |
118.71 |
116.80 |
C30-C31-O38 |
111.22 |
|
C8-C10-C11 |
118.63 |
120.35 |
C30-C31-H64 |
109.10 |
|
C8-C10-H12 |
118.62 |
|
C33-C31-O38 |
109.57 |
|
C11-C10-H12 |
122.70 |
|
C33-C31-H64 |
109.72 |
|
C7-C11-C10 |
122.22 |
120.48 |
O38-C31-H64 |
108.27 |
|
C7-C11-O35 |
114.01 |
|
C33-C32-O34 |
109.67 |
|
C10-C11-O35 |
123.77 |
|
C33-C32-C54 |
113.78 |
|
C1-O13-C2 |
116.59 |
120.85 |
C33-C32-H66 |
109.20 |
|
C8-O15-H16 |
106.52 |
|
O34-C32-C54 |
105.99 |
|
Bond Angles (˚) |
|
|
Bond Angles (˚) |
|
|
C1-C17-C18 |
121.16 |
|
O34-C32-H66 |
109.00 |
|
C1-C17-C19 |
120.24 |
122.71 |
C54-C32-H66 |
109.07 |
|
C18-C17-C19 |
118.55 |
117.19 |
C31-C33-C32 |
110.36 |
|
C17-C18-C20 |
120.80 |
119.30 |
C31-C33-O36 |
109.48 |
|
C17-C18-H21 |
119.55 |
|
C31-C33-H65 |
109.20 |
|
C20-C18-H21 |
119.64 |
|
C32-C33-O36 |
111.44 |
|
C32-C33-H65 |
110.90 |
|
C32-C54-O55 |
112.01 |
|
O36-C33-H65 |
105.31 |
|
C32-C54-H57 |
108.61 |
|
C29-O34-C32 |
114.52 |
|
C32-C54-H58 |
108.86 |
|
C11-O35-C29 |
119.78 |
|
O55-C54-H57 |
111.97 |
|
C33-O36-H37 |
105.12 |
|
O55-C54-H58 |
107.36 |
|
C31-O38-H39 |
104.36 |
|
H57-C54-H58 |
107.91 |
|
C30-O40-C41 |
116.34 |
|
C54-O55-H56 |
106.57 |
|
O40-C41-C42 |
108.94 |
|
C44-C69-H70 |
110.15 |
|
O40-C41-O46 |
108.38 |
|
C44-C69-H71 |
109.57 |
|
O40-C41-H47 |
107.95 |
|
C44-C69-H72 |
110.51 |
|
C42-C41-O46 |
113.73 |
|
H70-C69-H71 |
109.00 |
|
C42-C41-H47 |
109.52 |
|
H70-C69-H72 |
108.38 |
|
O46-C41-H47 |
108.15 |
|
H71-C69-H72 |
109.20 |
|
C41-C42-C43 |
110.15 |
|
C32-C54-O55 |
112.01 |
|
C41-C42-O48 |
110.63 |
|
C32-C54-H57 |
108.61 |
|
C41-C42-H63 |
108.33 |
|
C32-C54-H58 |
108.86 |
|
C43-C42-O48 |
107.85 |
|
O55-C54-H57 |
111.97 |
|
C43-C42-H63 |
108.91 |
|
O55-C54-H58 |
107.36 |
|
O48-C42-H63 |
110.96 |
|
H57-C54-H58 |
107.91 |
|
C42-C43-C45 |
111.34 |
|
C54-O55-H56 |
106.57 |
|
C42-C43-50 |
109.69 |
|
C44-C69-H70 |
110.15 |
|
C42-C43-H62 |
108.26 |
|
C44-C69-H71 |
109.57 |
|
C45-C43-50 |
108.45 |
|
C44-C69-H72 |
110.51 |
|
C45-C43-H62 |
108.29 |
|
H70-C69-H71 |
109.00 |
|
50-C43-H62 |
110.82 |
|
H70-C69-H72 |
108.38 |
|
C45-C44-O46 |
109.80 |
|
H71-C69-H72 |
109.20 |
|
C45-C44-H60 |
107.84 |
|
Dihedral angles (º) |
|
|
C45-C44-C69 |
112.91 |
|
O13-C1-C5-C4 |
-54.56 |
|
O46-C44-H60 |
110.48 |
|
O13-C1-C5-H9 |
65.13 |
|
O46-C44-C69 |
106.72 |
|
O13-C1-C5-H68 |
-176.53 |
|
H61-C44-C69 |
109.10 |
|
C17-C1-C5-C4 |
-175.65 |
|
C43-C45-C44 |
111.98 |
|
C17-C1-C5-H9 |
-55.96 |
|
Bond angles (Å) |
|
|
Dihedral angles (º) |
|
|
C43-C45-O52 |
112.34 |
|
C17-C1-C5-H68 |
62.38 |
|
C43-C45-H61 |
106.70 |
|
H73-C1-C5-C4 |
62.65 |
|
C44-C45-O52 |
105.67 |
|
H73-C1-C5-H9 |
-177.67 |
|
C44-C45-H61 |
108.62 |
|
H73-C1-C5-H68 |
-59.33 |
|
O52-C45-H61 |
111.54 |
|
C5-C1-O13-C2 |
51.63 |
|
C41-O46-C44 |
117.45 |
|
C17-C1-O13-C2 |
175.88 |
|
C42-O48-H49 |
108.56 |
|
H73-C1-O13-C2 |
-66.28 |
|
C43-50-H51 |
105.73 |
|
C5-C1-C17-C18 |
80.31 |
|
C45-O52-H53 |
107.93 |
|
C5-C1-C17-C19 |
-97.28 |
|
Two asymmetric CH3 bending, one symmetric CH3 bending, two CH3 rocking and one CH3 torsional vibrations are possible [22]. The methyl group symmetric deformation absorbs moderately to strong in the range 1365±25 cm-1 and asymmetric methyl deformations in the region 1390-1480 cm-1 [23]. Based on the above conclusion the observed bands 1453/1456 (FT-IR/ Raman) and 1363 cm-1/FT-IR are attributed to δCH3 (asym) and δCH3 (sym), respectively. The methyl rocking generally appears in the region 1050±30 and 975+45 cm-1 [24], as a weak moderate or sometimes strong band, the wavenumber of which is coupled to the C-C stretching vibrations, which occur in the neighborhood of 900 cm-1. The FT-Raman band 1122 cm-1 (medium strong) and
Mode |
Scaled |
FT-IR |
FT-Raman |
IbIR |
IcRaman |
Vibrational assignments |
1 |
3 |
|
|
0.05 |
79.30 |
τC29-O35-C11-C7(46)+ τC29-O35-C11-C10(45) |
2 |
14 |
|
|
0.00 |
13.63 |
τC32-O34-C29-O35(11)+ τC41-O40-C30-C29(14) |
3 |
18 |
|
|
0.02 |
28.67 |
τC11-O35-C29-C30(21)+ τC11-O35-C29-O34(18) |
4 |
23 |
|
|
0.13 |
100 |
τC18-C17-C1-O13(15)+ τC19-C17-C1-C5(23)+ ΓC19-C17-C1-O13(16) |
5 |
33 |
|
|
0.01 |
6.17 |
τC42-C41-O40-C30(10) |
6 |
34 |
|
|
0.13 |
17.21 |
τCCCC(3) |
7 |
38 |
|
|
0.10 |
22.75 |
τCOCC(30) |
8 |
39 |
|
|
0.16 |
20.95 |
τC2-O13-C1-C17(22) |
9 |
50 |
|
|
0.04 |
3.72 |
τC44-O46-C41-O40(16) |
10 |
60 |
|
|
0.25 |
4.79 |
τCCCC(10)+ τOCCC(13) |
11 |
76 |
|
|
0.02 |
2.30 |
τOCOC(10) |
12 |
82 |
|
86s |
0.37 |
1.09 |
τcccc(16)+ Γoccc(13) |
13 |
95 |
|
|
0.09 |
1.15 |
δC11-O35-C29(10)+ τC41-O40-C30-C31(10) |
14 |
103 |
|
|
0.29 |
1.01 |
τOCCO(10) |
15 |
111 |
|
|
0.62 |
0.54 |
τOCCC(13) |
16 |
114 |
|
|
0.46 |
0.70 |
τO55C54C32C33(10) |
17 |
126 |
|
|
1.04 |
1.01 |
δC41-O40-C30(12)+ τC44-O46-C41-O40(11) |
18 |
132 |
|
140w |
0.14 |
2.02 |
τccco(10) |
19 |
143 |
|
|
0.34 |
2.22 |
τOCCC(10) |
20 |
169 |
|
168w |
0.50 |
1.30 |
δccc(15) |
21 |
182 |
|
|
0.21 |
1.36 |
νCC(10)+δCCC(13)+ τOCCC(10) |
22 |
186 |
|
|
2.01 |
2.70 |
δOCC(10) |
23 |
206 |
|
|
3.04 |
2.61 |
δOCC(10) |
24 |
209 |
|
|
0.08 |
0.99 |
τHCCC(37)+ τHCCO(18)+ τHCCH (24) |
25 |
215 |
|
|
0.36 |
0.57 |
τC11-C10-C8-O15(20) |
26 |
220 |
|
220w |
1.31 |
0.59 |
δC45-C44-C69(14) +τHCCC (10) |
27 |
228 |
|
|
1.85 |
2.90 |
τH56O55C54C32(10) |
28 |
229 |
|
|
0.72 |
0.55 |
τO52C45C44(10) |
29 |
240 |
|
247w |
8.53 |
3.46 |
τH56-O55-C54-C32(32)+ τH56-O55-C54-H57(22)+ τH56-O55-C54-H58(11) |
30 |
256 |
|
|
0.40 |
1.88 |
δCCC(10) |
31 |
267 |
|
|
0.80 |
0.96 |
τHOCC(10) |
32 |
283 |
|
|
0.36 |
0.91 |
δCCC(10)+δOCC(10) |
33 |
284 |
|
|
0.78 |
1.82 |
τC41O40C30(10) |
34 |
293 |
|
|
0.48 |
0.62 |
τO38C31C30O40(10) |
35 |
300 |
|
|
0.94 |
0.77 |
τOCCC(10)+ ΓOCCO(10) |
36 |
309 |
|
|
0.43 |
0.82 |
δO55C54C32(16) |
37 |
315 |
|
|
0.10 |
1.29 |
δOCC(10) |
38 |
321 |
|
|
2.60 |
0.71 |
δOCC(15)+δCCO(10) |
39 |
340 |
|
|
15.04 |
2.29 |
τH28-O27-C24-C20(47)+ τH28-O27-C24-C22(52) |
40 |
345 |
|
|
0.70 |
0.27 |
δOCC(14)+δCCO(10)+τHOCC(11) |
41 |
363 |
|
|
2.62 |
1.00 |
δOCC(11)+ τOCCC(13) |
42 |
365 |
|
|
12.40 |
1.06 |
τH53-O52-C45-C43(29)+ τH53-O52-C45-C44(17)+ τH53-O52-C45-H61(22) |
43 |
366 |
|
|
0.69 |
2.83 |
δOCC(10) |
44 |
376 |
|
385w |
0.98 |
0.86 |
δOCC (10) |
45 |
395 |
|
|
6.04 |
1.46 |
τH51-O50-C43-C45(14) |
46 |
399 |
|
|
4.05 |
0.83 |
δO27-C24-C20(20)+δO27-C24-C22(23) |
47 |
402 |
|
|
2.25 |
0.27 |
δO27-C24-C20(11) |
48 |
406 |
|
|
0.19 |
0.29 |
τC24-C20-C18-C17(18)+ τC24-C22-C19-C17(18) |
49 |
409 |
|
|
3.30 |
1.23 |
τH51-O50-C43-C42(11)+ τΓH51-O50-C43-H62(12) |
50 |
417 |
|
|
4.16 |
1.81 |
τH51-O50-C43-C42(15) |
51 |
419 |
|
|
11.62 |
1.14 |
τH16-O15-C8-C3(31)+ τH16-O15-C8-C10(32) |
52 |
432 |
|
|
0.49 |
1.84 |
τHOCC(13) |
53 |
435 |
434w |
|
5.92 |
0.45 |
τHCCC(10) |
54 |
446 |
|
448w |
4.02 |
0.95 |
δCCO(10) |
55 |
476 |
|
469w |
0.41 |
0.41 |
δCCO(10) |
56 |
481 |
481w |
|
1.63 |
1.09 |
τCCOC(11)+ τHOCC(12) |
57 |
497 |
|
|
2.25 |
0.71 |
δCCC(11) |
58 |
503 |
|
|
3.69 |
1.57 |
τHOCC(13) |
59 |
514 |
511w |
|
0.30 |
0.99 |
δCOC(14) |
60 |
517 |
|
|
3.71 |
0.52 |
δC10C8C3(10) |
61 |
523 |
522w |
520w |
3.30 |
3.07 |
νCC(10)+νOC(10)+ τHOCC(22)+ τHOCH(10) |
62 |
541 |
|
|
1.15 |
1.65 |
δCCC(10) |
63 |
546 |
|
|
2.37 |
1.18 |
δCCC(10) |
64 |
548 |
|
563w |
1.26 |
1.93 |
νCC(10) |
65 |
576 |
561w |
|
0.31 |
0.67 |
δOCC(13) |
66 |
597 |
|
|
2.97 |
1.77 |
δOCC(11) |
67 |
605 |
608w |
607w |
2.01 |
0.48 |
τHCCC(10) |
68 |
616 |
|
|
1.10 |
4.59 |
τCCCC(10)+ τCCCH(10) |
69 |
621 |
626w |
|
0.97 |
0.15 |
τCCCC(12)+ τOCCC(10) |
70 |
630 |
637w |
|
1.21 |
2.15 |
δCCC(35) |
71 |
642 |
|
643w |
0.81 |
3.90 |
νCC(16) |
72 |
661 |
|
663ms |
0.30 |
0.67 |
δCOC(12) |
73 |
666 |
668w |
|
4.51 |
0.24 |
τCCOC(14) |
74 |
682 |
|
|
0.94 |
2.08 |
νCC(21) |
75 |
700 |
702w |
704w |
7.31 |
0.71 |
τH37-O36-C33-C31(10) |
76 |
706 |
|
|
2.47 |
0.58 |
τCCCC(26) |
77 |
713 |
|
|
8.57 |
0.83 |
τHOCC(20) |
78 |
718 |
730w |
|
0.23 |
0.55 |
τCCCC(31)+ τOCCC(21) |
79 |
752 |
743w |
748w |
14.50 |
0.21 |
τH49-O48-C42-C41(30)+ τH49-O48-C42-C43(27)+ τH49-O48-C42-H63(14) |
80 |
774 |
|
|
5.37 |
0.49 |
τHOCC(22)+ τHOCH(10) |
81 |
784 |
|
|
2.59 |
1.96 |
τH12-C10-C8-O15(20)+ τO35-C11-C10-H12(20) |
82 |
788 |
|
|
2.02 |
1.41 |
τH25-C20-C18-C17(20)+ τC22-C24-C20-H25(14)+ τO27-C24-C20-H25(23) |
83 |
794 |
|
|
4.26 |
2.11 |
νC69-C44(15) |
84 |
796 |
|
|
2.84 |
2.84 |
νO27-C24(14) |
85 |
805 |
|
|
1.86 |
1.69 |
νCC(18)+νOC(11) |
86 |
812 |
|
812w |
6.63 |
0.48 |
τC24-C22-C19-H23(13)+ τH26-C22-C19-C17(17)+ τO27-C24-C22-H26(21) |
87 |
814 |
|
|
1.23 |
4.67 |
νO34-C32(18) |
88 |
823 |
821ms |
|
5.97 |
0.24 |
νCC(17)+ νOC(11) |
89 |
848 |
835w |
837w |
1.61 |
2.71 |
νC18-C17(11) |
90 |
856 |
|
|
0.95 |
0.28 |
νC33-C31(14) |
91 |
871 |
864vw |
864w |
0.45 |
1.47 |
νC43-C42(15) |
92 |
876 |
888w |
|
2.61 |
0.89 |
νO13-C1(16) |
93 |
877 |
|
|
6.17 |
0.34 |
νCC(22)+νOC(23) |
94 |
910 |
|
896ms |
0.22 |
0.34 |
τH21-C18-C17-C1(15)+ τC24-C20-C18-H21(11)+ τH25-C20-C18-H21(35) |
95 |
922 |
919w |
|
0.01 |
0.12 |
τH23-C19-C17-C1(12)+ τH23-C19-C17-C18(11)+ τH26-C22-C19-H23(36) |
96 |
923 |
|
|
1.76 |
2.11 |
νO46-C44(17)+δH-C-C(13) |
97 |
953 |
|
|
0.54 |
0.74 |
νO13-C1(11) +τHCCC (10) |
98 |
961 |
|
|
1.34 |
1.10 |
νC45-C43(24)+δH72-C69-C44(11)+ τH70-C69-C44 (10) |
99 |
963 |
|
|
2.63 |
0.87 |
νC31-C30(13)+νO36-C33(12) |
100 |
987 |
986ms |
982w |
28.45 |
4.40 |
νO35-C29(20) |
101 |
990 |
|
1002w |
3.25 |
0.12 |
νCC(31)+δCCC(32)+δCCH(18)+δHCC(14) |
102 |
1004 |
|
|
10.29 |
1.40 |
νO38-C31(11) |
103 |
1011 |
|
|
38.88 |
0.64 |
νOC(16)+νCC(12) |
104 |
1021 |
|
|
8.50 |
1.82 |
νOC(16)+ νCC(10) |
105 |
1025 |
|
|
8.95 |
0.44 |
νCC(11)+ νCO(32)+νC69-C44(10) |
106 |
1032 |
|
|
13.48 |
0.82 |
νC33-C32(14) |
107 |
1038 |
|
|
15.47 |
0.66 |
νO40-C30(11)+νO55-C54(24) |
108 |
1039 |
|
1039w |
15.09 |
0.88 |
νC5-C1(14)+νC33-C32(14) |
109 |
1040 |
1040s |
|
3.50 |
3.12 |
νC5-C1(19)+νO13-C1(11) |
110 |
1053 |
|
|
57.67 |
0.97 |
νC41-O40(20)+νO46-C41(18)+νO52-C45(18) |
111 |
1063 |
1060s |
|
33.94 |
1.22 |
νO13-C2(12)+νO15-C8(11)+νO55-C54(19) |
112 |
1066 |
|
|
2.32 |
1.28 |
νO55-C54(16) +νCO(35) |
113 |
1070 |
|
|
6.68 |
0.27 |
νCO(42) |
114 |
1073 |
|
|
7.73 |
0.99 |
νCO(26) |
115 |
1076 |
1071s |
|
7.75 |
0.30 |
νO36-C33(19) |
116 |
1082 |
|
1081ms |
25.65 |
1.70 |
νO38-C31(15)+νC41-O40(11)+νO48-C42(11) |
117 |
1087 |
1089s |
|
1.36 |
0.95 |
νC22-C19(15)+δH26-C22-C19(14) |
118 |
1095 |
|
|
15.05 |
0.57 |
νCO(18) |
119 |
1100 |
|
|
12.86 |
1.28 |
νO48-C42(29)+νO52-C45(24) |
120 |
1104 |
|
|
15.31 |
1.13 |
νC54-C32(11) |
121 |
1107 |
|
|
12.96 |
0.88 |
νO50-C43(12)+νO52-C45(13) |
122 |
1116 |
|
1122ms |
8.29 |
0.35 |
δH53-O52-C45(11) +ΓHCCH(10) |
123 |
1134 |
1136s |
|
17.14 |
0.89 |
νO46-C41(15) +δCCH(10) |
124 |
1142 |
|
|
3.17 |
2.44 |
νCO(19)+δCCH(14) |
125 |
1152 |
|
|
14.20 |
1.00 |
δH21-C18-C17(10)+δH26-C22-C19(11)+δC24-C22-H26(12) |
126 |
1153 |
|
|
2.97 |
0.92 |
δC24-C20-H25(10)+δH28-O27-C24(35) |
127 |
1159 |
|
|
41.82 |
1.39 |
δHCC(14)+νC-O(23) |
128 |
1175 |
1178s |
|
2.39 |
0.59 |
νC10-C8(11)+δH12-C10-C8(13)+δH16-O15-C8(36) |
129 |
1180 |
|
1185w |
3.80 |
1.01 |
δH56-O55-C54 (24)+δCCH(10)+δH37-O36-C33(10) |
130 |
1189 |
|
|
16.87 |
1.40 |
νC17C1(11) |
131 |
1191 |
|
|
1.29 |
4.38 |
νC17-C1(18) |
132 |
1201 |
|
|
5.32 |
0.05 |
δH51-O50-C43(17) |
133 |
1203 |
1205s |
1210s |
12.61 |
4.78 |
νC4-C3(10) |
134 |
1217 |
|
1215w |
3.99 |
0.92 |
δH56-O55-C54(23)+δH58-C54-C32(12)+δO55-C54-H58(10) |
135 |
1224 |
|
|
2.95 |
1.24 |
δH53-O52-C45(31) |
136 |
1227 |
|
|
1.00 |
0.77 |
δH68-C5-C1(16)+δH68-C5-C4(15) |
137 |
1245 |
|
|
0.96 |
0.93 |
δH57-C54-C32(13) |
138 |
1248 |
|
|
7.72 |
0.73 |
δH49-O48-C42(14) |
139 |
1254 |
|
1254w |
41.32 |
6.38 |
νC4-C3(18)+δH16-O15-C8(19) |
140 |
1256 |
|
|
1.73 |
0.24 |
δC43-C42-H63(11) |
141 |
1259 |
|
|
8.28 |
2.64 |
νO27-C24(48) |
142 |
1260 |
1263w |
|
0.21 |
0.44 |
δHOC(14) |
143 |
1279 |
|
|
0.17 |
1.21 |
δCCH(22) |
144 |
1284 |
1282w |
|
5.76 |
0.62 |
νC18-C17(12) |
145 |
1297 |
1296s |
|
1.93 |
1.15 |
νC45-C44(11)+ δO46-C44-H60(11) |
146 |
1310 |
|
|
6.20 |
1.91 |
δCCH(14)+δOCH(10) |
147 |
1312 |
|
|
6.75 |
1.57 |
δCCH(13)+δOCH(10)+νCOCH(12) |
148 |
1315 |
|
|
5.24 |
0.39 |
δH51-O50-C43(23) |
149 |
1322 |
|
|
11.27 |
0.37 |
νCC(15) |
150 |
1324 |
|
|
0.67 |
1.01 |
δH28-O27-C24(10) |
151 |
1328 |
|
|
5.73 |
0.68 |
νCC(31) |
152 |
1331 |
|
|
2.80 |
0.65 |
δCCH(10) |
153 |
1334 |
|
|
4.28 |
0.43 |
δHOC(10)+ ΓHCCH(11) |
154 |
1338 |
|
|
0.28 |
0.41 |
δO34-C32-H66(12) |
155 |
1344 |
1341ms |
|
7.17 |
1.37 |
δOCC(10) |
156 |
1345 |
|
|
1.95 |
0.85 |
δHCC(25) |
157 |
1349 |
|
1348ms |
1.73 |
0.32 |
δHCC(13)+ΓHCCH (11) |
158 |
1354 |
|
|
11.74 |
1.66 |
νO15-C8(12) |
159 |
1357 |
|
|
3.85 |
0.21 |
δHOC(11) |
160 |
1363 |
1363ms |
|
1.88 |
0.30 |
δH71-C69-H72(20)+δHCC(18) |
161 |
1370 |
|
1373w |
0.57 |
0.51 |
δO34-C29-H67(12)+ ΓH59-C30-C29-H67(11) |
162 |
1378 |
|
|
1.81 |
0.62 |
δHOC(12)+δHCO(10) |
163 |
1383 |
|
|
2.41 |
0.34 |
δCOH(11) |
164 |
1390 |
1393ms |
|
12.51 |
0.24 |
δH39-O38-C31(33) |
165 |
1399 |
|
|
2.48 |
0.80 |
δH37-O36-C33(26)+δH49-O48-C42(14) |
166 |
1407 |
|
|
1.85 |
0.15 |
δH51-O50-C43(13) +δHOC(18) |
167 |
1408 |
|
|
1.25 |
1.84 |
δH9-C5-H68(31) +ΓHCCC(25)+ΓHCCO(25)+ΓHCCH(10) |
168 |
1411 |
|
|
10.03 |
1.15 |
δH37-O36-C33(15)+δH39-O38-C31(14)+δH49-O48-C42(17) |
169 |
1420 |
|
|
13.63 |
0.06 |
νCC(29)+δCCH(11) |
170 |
1423 |
|
|
1.69 |
0.28 |
δH56-O55-C54(13)+δH57-C54-C32(25)+ΓHOCC(19) |
171 |
1429 |
|
|
16.16 |
0.06 |
δCCC(25)+δCCH(11) |
172 |
1447 |
|
|
0.60 |
1.85 |
δH70-C69-C44(11)+δH70-C69-H71(24)+δH71-C69-H72(23) |
173 |
1450 |
1453ms |
1456ms |
0.08 |
1.04 |
δH70-C69-H72(39) +ΓHCCH (10) |
174 |
1466 |
|
|
0.99 |
1.30 |
δH57-C54-H58(30) +ΓHCCC(16)+ΓHCCO(16)+ΓHCCH(17) |
175 |
1473 |
|
|
4.50 |
0.18 |
νC11-C7(17) |
176 |
1502 |
1502ms |
1502vw |
12.45 |
0.71 |
νC18-C17(10) |
177 |
1561 |
|
1574ms |
20.70 |
0.96 |
νC3-C2(12)+νC8-C3(13)+νC11-C7(12)+νC11-C10(28) |
178 |
1584 |
1582ms |
|
3.29 |
0.61 |
νC18-C17(11)+νC19-C17(20)+νC24-C20(20)+νC24-C22(17) |
179 |
1598 |
|
|
105.6 |
14.03 |
νC7-C2(22)+νC10-C8(20)+νC11-C7(12) |
180 |
1610 |
|
|
7.51 |
8.61 |
νC20-C18(20)+νC22-C19(20)+νC24-C22(10) |
181 |
1710 |
1646s |
1643vs |
36.22 |
7.18 |
νO14-C4(87) |
182 |
2865 |
|
|
6.63 |
2.26 |
νC54-H57(70)+νC54-H58(30) |
183 |
2873 |
|
|
0.65 |
0.73 |
νC41-H47(20)+νC45-H61(33)+νC43-H62(39) |
184 |
2883 |
|
|
2.33 |
1.37 |
νC41-H47(39)+νC45-H61(11)+νC43-H62(49) |
185 |
2888 |
2890w |
|
3.24 |
1.62 |
νC1-H73(97) |
186 |
2890 |
|
|
4.81 |
2.82 |
νC41-H47(29)+νC45-H61(51)+νC42-H63(19) |
187 |
2904 |
|
2899ms |
4.31 |
1.64 |
νC54-H57(28)+νC54-H58(69) |
188 |
2907 |
|
|
13.46 |
0.29 |
νC41-H47(12)+νC43-H62(12)+νC42-H63(70) |
189 |
2927 |
2929w |
|
1.27 |
1.28 |
νC5-H9(87)+νC5-H68(11) |
190 |
2938 |
|
|
1.52 |
3.52 |
νC44-H60(13)+νC69-H70(41)+νC69-H71(20)+νC69-H72(25) |
191 |
2939 |
|
2939w |
2.77 |
0.78 |
νC29-H67(97) |
192 |
2941 |
|
|
4.72 |
1.18 |
νC44-H60(83) |
193 |
2943 |
|
|
1.93 |
1.77 |
νC33-H65(23)+νC32-H66(73) |
194 |
2952 |
|
2958w |
1.95 |
0.98 |
νC31-H64(23)+νC33-H65(55)+νC32-H66(21) |
195 |
2965 |
|
|
6.01 |
2.23 |
νC31-H64(73)+νC33-H65(22) |
196 |
2985 |
2970w |
2976w |
2.17 |
1.36 |
νC30-H59(95) |
197 |
3005 |
|
|
1.16 |
2.05 |
νC5-H9(10)+νC5-H68(89) |
198 |
3008 |
|
|
4.42 |
0.75 |
νC69 H70(52)+νC69-H72(42) |
199 |
3021 |
|
|
1.75 |
1.53 |
νC69-H71(71)+νC69-H72(25) |
200 |
3042 |
|
|
3.33 |
1.72 |
νC20-H25(96) |
201 |
3053 |
|
|
1.14 |
1.28 |
νC19-H23(95) |
202 |
3083 |
|
3071w |
0.88 |
0.96 |
νC18-H21(95) |
203 |
3089 |
|
|
0.86 |
3.57 |
νC22-H26(94) |
204 |
3096 |
|
|
0.89 |
1.70 |
νC10-H12(100) |
205 |
3114 |
|
|
0.01 |
1.24 |
νC7-H6(100) |
206 |
3425 |
3427s |
|
69.82 |
1.75 |
νO48-H49(95) |
207 |
3497 |
|
|
12.72 |
0.40 |
νO38-H39(92) |
208 |
3555 |
|
|
17.68 |
0.40 |
νO36-H37(97) |
209 |
3603 |
|
|
8.26 |
0.53 |
νO50-H51(100) |
210 |
3653 |
|
|
5.73 |
1.47 |
νO15-H16(100) |
211 |
3658 |
|
|
4.70 |
1.07 |
νO52-H53(100) |
212 |
3672 |
|
|
7.22 |
1.56 |
νO27-H28(100) |
213 |
3680 |
|
|
3.36 |
1.75 |
νO55-H56(100) |
b Relative IR Absorption intensities normalized with highest peak absorption equal to 100,
c Relative raman intensities calculated by equation (2.1) and normalized to 100.
d Total energy distribution calculated at B3LYP/6-31G(d,p) level.
In this molecule, there are two CH2 groups (ring B & D). The general order of CH2 deformation is: CH2 scissoring > CH2 wagging > CH2 twisting > CH2 rocking. In the present study, the CH2 bending modes follow the same trend. Since the bending modes involving hydrogen atom attached to the central carbon fall into the range 1450-875 cm-1 there are extensive vibrational coupling of these modes with CH2 deformations particularly with the CH2 twist [26]. It is notable that both CH2 scissoring and CH2 rocking were sensitive to the molecular conformation. The mode numbers: 167, 174 are belonging to the δCH2 mode. The frequencies observed at 1185 cm-1 (FT-Raman) and at 1136 cm-1 (FT-IR) are assigned to CH2 wagging and CH2 twisting, respectively. The other fundamental mode of CH2 (rocking: mode number: 97) is observed in the expected region and also presented in Table 1. These assignments are found to be satisfactorily in agreement with the reported values [27].
The OH in-plane bending vibration appears in the range of 1440-1395 cm-1. Akkaya and Akyüz et al. assigned this vibration at 1294 and 1160 cm-1 in IR for 4-aminosalicylic acid [18, 30]. For 3-aminosalicylic acid, this band is observed at 1340 and 1171 cm-1 which is a motion of hydroxyl group [31]. In the present work, the O-H in-plane bending mode is assigned to 1393 cm-1 in FT-IR and 1254, 1185, 1122 cm-1 in FT-Raman experimentally, which are calculated at 1390, 1254, 1180, 1116 (mode numbers: 164, 139, 129, 122) for Naringin. The above assignments are supported by TED values. The δCOH and τCOH vibrations (harmonic) are calculated in the regions 1423-1153 cm-1 (mode numbers: 170- 126) and 774-228 cm-1 (mode numbers: 80-27), respectively. The observed bands 1215 (FT-Raman), 1263 cm-1(FT-IR) and
Scaled |
FT-IR |
FT-Raman |
IbIR |
IcRaman |
Vibrational assignments |
82 |
|
86s |
0.37 |
1.09 |
τcccc(16)+ Γoccc(13) |
132 |
|
140w |
0.14 |
2.02 |
τccco(10) |
169 |
|
168w |
0.50 |
1.30 |
δccc(15) |
220 |
|
220w |
1.31 |
0.59 |
δC45-C44-C69(14) +τHCCC (10) |
240 |
|
247w |
8.53 |
3.46 |
τH56-O55-C54-C32(32)+ τH56-O55-C54-H57(22)+ τH56-O55-C54-H58(11) |
376 |
|
385w |
0.98 |
0.86 |
δOCC (10) |
435 |
434w |
|
5.92 |
0.45 |
τHCCC(10) |
446 |
|
448w |
4.02 |
0.95 |
δCCO(10) |
476 |
|
469w |
0.41 |
0.41 |
δCCO(10) |
481 |
481w |
|
1.63 |
1.09 |
τCCOC(11)+ τHOCC(12) |
514 |
511w |
|
0.30 |
0.99 |
δCOC(14) |
523 |
522w |
520w |
3.30 |
3.07 |
νCC(10)+νOC(10)+ τHOCC(22)+τHOCH(10) |
548 |
|
563w |
1.26 |
1.93 |
νCC(10) |
576 |
561w |
|
0.31 |
0.67 |
δOCC(13) |
597 |
|
|
2.97 |
1.77 |
δOCC(11) |
605 |
608w |
607w |
2.01 |
0.48 |
τHCCC(10) |
616 |
|
|
1.10 |
4.59 |
τCCCC(10)+ τCCCH(10) |
621 |
626w |
|
0.97 |
0.15 |
τCCCC(12)+ τOCCC(10) |
630 |
637w |
|
1.21 |
2.15 |
δCCC(35) |
642 |
|
643w |
0.81 |
3.90 |
νCC(16) |
661 |
|
663ms |
0.30 |
0.67 |
δCOC(12) |
666 |
668w |
|
4.51 |
0.24 |
τCCOC(14) |
700 |
702w |
704w |
7.31 |
0.71 |
τH37-O36-C33-C31(10) |
718 |
730w |
|
0.23 |
0.55 |
τCCCC(31)+ τOCCC(21) |
752 |
743w |
748w |
14.50 |
0.21 |
τH49-O48-C42-C41(30)+ τH49-O48-C42-C43(27)+ τH49-O48-C42-H63(14) |
812 |
|
812w |
6.63 |
0.48 |
τC24-C22-C19-H23(13)+ τH26-C22-C19-C17(17)+ τO27-C24-C22-H26(21) |
823 |
821ms |
|
5.97 |
0.24 |
νCC(17)+ νOC(11) |
848 |
835w |
837w |
1.61 |
2.71 |
νC18-C17(11) |
871 |
864vw |
864w |
0.45 |
1.47 |
νC43-C42(15) |
876 |
888w |
|
2.61 |
0.89 |
νO13-C1(16) |
910 |
|
896ms |
0.22 |
0.34 |
τH21-C18-C17-C1(15)+ τC24-C20-C18-H21(11)+τH25-C20-C18-H21(35) |
922 |
919w |
|
0.01 |
0.12 |
τH23-C19-C17-C1(12)+ τH23-C19-C17-C18(11)+ τH26-C22-C19-H23(36) |
987 |
986ms |
982w |
28.45 |
4.40 |
νO35-C29(20) |
990 |
|
1002w |
3.25 |
0.12 |
νCC(31)+δCCC(32)+δCCH(18)+δHCC(14) |
1039 |
|
1039w |
15.09 |
0.88 |
νC5-C1(14)+νC33-C32(14) |
1040 |
1040s |
|
3.50 |
3.12 |
νC5-C1(19)+νO13-C1(11) |
1063 |
1060s |
|
33.94 |
1.22 |
νO13-C2(12)+νO15-C8(11)+νO55-C54(19) |
1076 |
1071s |
|
7.75 |
0.30 |
νO36-C33(19) |
1082 |
|
1081ms |
25.65 |
1.70 |
νO38-C31(15)+νC41-O40(11)+νO48-C42(11) |
1087 |
1089s |
|
1.36 |
0.95 |
νC22-C19(15)+δH26-C22-C19(14) |
1116 |
|
1122ms |
8.29 |
0.35 |
δH53-O52-C45(11) +ΓHCCH(10) |
1134 |
1136s |
|
17.14 |
0.89 |
νO46-C41(15) +δCCH(10) |
1175 |
1178s |
|
2.39 |
0.59 |
νC10-C8(11)+δH12-C10-C8(13)+δH16-O15-C8(36) |
1180 |
|
1185w |
3.80 |
1.01 |
δH56-O55-C54 (24)+δCCH(10)+δH37-O36-C33(10) |
1203 |
1205s |
1210s |
12.61 |
4.78 |
νC4-C3(10) |
1217 |
|
1215w |
3.99 |
0.92 |
δH56-O55-C54(23)+δH58-C54-C32(12)+δO55-C54-H58(10) |
1254 |
|
1254w |
41.32 |
6.38 |
νC4-C3(18)+δH16-O15-C8(19) |
1260 |
1263w |
|
0.21 |
0.44 |
δHOC(14) |
1284 |
1282w |
|
5.76 |
0.62 |
νC18-C17(12) |
1297 |
1296s |
|
1.93 |
1.15 |
νC45-C44(11)+ δO46-C44-H60 (11) |
1344 |
1341ms |
|
7.17 |
1.37 |
δOCC(10) |
1349 |
|
1348ms |
1.73 |
0.32 |
δHCC(13)+ΓHCCH (11) |
1363 |
1363ms |
|
1.88 |
0.30 |
δH71-C69-H72(20)+δHCC(18) |
1370 |
|
1373w |
0.57 |
0.51 |
δO34-C29-H67(12)+ ΓH59-C30-C29-H67(11) |
1390 |
1393ms |
|
12.51 |
0.24 |
δH39-O38-C31(33) |
1450 |
1453ms |
1456ms |
0.08 |
1.04 |
δH70-C69-H72(39) +ΓHCCH(10) |
1502 |
1502ms |
1502vw |
12.45 |
0.71 |
νC18-C17(10) |
1561 |
|
1574ms |
20.70 |
0.96 |
νC3-C2(12)+νC8-C3(13)+νC11-C7(12)+νC11-C10(28) |
1584 |
1582ms |
|
3.29 |
0.61 |
νC18-C17(11)+νC19-C17(20)+νC24-C20(20)+νC24-C22(17) |
1710 |
1646s |
1643vs |
36.22 |
7.18 |
νO14-C4(87) |
2888 |
2890w |
|
3.24 |
1.62 |
νC1-H73(97) |
2904 |
|
2899ms |
4.31 |
1.64 |
νC54-H57(28)+νC54-H58(69) |
2927 |
2929w |
|
1.27 |
1.28 |
νC5-H9(87)+νC5-H68(11) |
2939 |
|
2939w |
2.77 |
0.78 |
νC29-H67(97) |
2952 |
|
2958w |
1.95 |
0.98 |
νC31-H64(23)+νC33-H65(55)+νC32-H66(21) |
2985 |
2970w |
2976w |
2.17 |
1.36 |
νC30-H59(95) |
3083 |
|
3071w |
0.88 |
0.96 |
νC18-H21(95) |
3425 |
3427s |
|
69.82 |
1.75 |
νO48-H49(95) |
b Relative IR Absorption intensities normalized with highest peak absorption equal to 100,
c Relative raman intensities calculated by equation (2.1) and normalized to 100.
d Total energy distribution calculated at B3LYP/6-31G(d,p) level.
In 2, 6-dichloro-4-nitrophenol, the νC-O vibrations lie in the region 1095-1310 cm-1 [35]. In our study, the νC-O vibrations are observed at different frequencies in different rings (A, B, C, D & E). The computed wavenumbers in the range 1354-1053 cm-1 (mode numbers: 158, 141, 124, 123, 121, 119, 118, 116-110) are assigned to νC-O mode. These vibrations have considerable TED and also find support from 1136, 1071, 1060 cm-1 (FT-IR) and 1081 cm-1 (FT-Raman). In ring B, the νO13-C2 is observed at higher frequency (1060 cm-1: FT-IR/1063: mode number: 111) than the νO13-C1 (1040 cm-1: FT-IR/1040: mode number: 109). The harmonic values C41-O46:1053 cm-1/mode number: 110 and C32-O34:814 cm-1/mode number: 87 are belongs to ring E and ring D, respectively.
Similarly the computed values 1066 cm-1/mode number: 112, 1038 cm-1/mode number: 107 and 987 cm-1/mode number: 100 are belongs to C54-O55, C30-O40 and C29-O35 stretching vibrations, respectively.
In-plane bending deformation δHCC and δCCH are observed at 1348 (FT-Raman), 1215 (FT-Raman), 1178 (FT-IR), 1089 (FTIR) and 1002 cm-1 (FT-Raman) respectively. The observed FT-IR bands: 919, 608, 434 cm-1/Raman: 896, 812, 607 cm-1 and FTRaman bands: 896, 812 cm-1 are assigned to τHCC and τCCH modes, respectively. Erdoğdu et al., observed the δCCH mode in the region 1495-1001 cm-1 and τCCH mode in the region (FT-IR) 923-451 cm-1 for 6,8-dichloroflavone [33]. The ring breathing mode was calculated at 990 cm-1/ mode number: 101 for Naringin and was observed at 1002 cm-1 in Raman spectra. These assignments are in line with literature [33].
The NBO analysis has been carried out to elucidate the intra-molecular interaction among natural bond orbitals, the results of NBO analysis are presented in Table 2. In the present investigation, the π- π* interaction are mainly interested. Here the electron densities of conjugated π bonds are lower than the σ bond. Whereas, the delocalization is more while the transition from π bond to π* bond. The larger E(2) value, denotes that the more delocalization takes place into a particular bond, it mainly occurs during π-π* transition. Moreover, as mentioned above the electron densities in donor (i) π bonds decreases, at the same time electron density increases in acceptor (j) π* bonds. It is evident from the Table 2 the donor (π) bonds have 1.678, 1.621, 1.667, 1.702 and 1.652e as electron densities for C2-C7, C3-C8, C17-C18, C19-C22 & C20-C24 bond, respectively. These electron densities are relatively lesser than the σ bonds. On the other hand, the strong delocalization occurs between donor (π: C2-C7, C3-C8, C17-C18, C19-C22 and C20-C24 bonds) and acceptor ( π*: C3-C8, C2-C7, C19-C22, C17-C18 and C17-C18 bonds) bonds, and the electron densities relatively increased in acceptor bonds and hence leading to more stabilization energies are obtained as 51.46, 126.44, 96.23, 75.02 and 94.73 kJ/mol, respectively. The NBO analysis explores the insights of intra molecular interactions among the intra bonds in Naringin molecule.
Type |
Donor (i) |
ED/e |
Acceptor (j) |
ED/e |
E(2) |
|
π-π* |
C2-C7(2) |
1.678 |
C3-C8(2) |
0.468 |
51.46 |
|
|
|
|
C10 –C11(2) |
0.429 |
121.92 |
|
π-π* |
C3-C8(2) |
1.621 |
C2-C7(2) |
0.387 |
126.44 |
|
|
|
|
C4-O14(2) |
0.159 |
92.05 |
|
|
|
|
C10-C11(2) |
0.429 |
54.56 |
|
π-π* |
C10 – C11(2) |
1.973 |
C2-C7(2) |
0.387 |
52.51 |
|
|
|
|
C3-C8(2) |
0.468 |
122.47 |
|
π-π* |
C17-C18(2) |
1.667 |
C19-C22(2) |
0.335 |
96.23 |
|
|
|
|
C20-C24(2) |
0.394 |
75.56 |
|
π-π* |
C19-C22(2) |
1.702 |
C17-C18(2) |
0.361 |
75.02 |
|
|
|
|
C20-C24(2) |
0.394 |
95.60 |
|
π-π* |
C20-C24(2) |
1.652 |
C17-C18(2) |
0.361 |
94.73 |
|
|
|
|
C19-C22(2) |
0.335 |
71.96 |
|
n- π * |
LPO13(2) |
1.837 |
C2-C7(2) |
0.387 |
121.84 |
|
n- σ* |
LPO14(2) |
1.877 |
C3-C4 |
0.071 |
100.17 |
|
|
|
|
C4-C5 |
0.064 |
95.90 |
|
n- π * |
LPO15(2) |
1.838 |
C3 –C8(2) |
0.468 |
152.30 |
|
n- π * |
LPO27(2) |
1.869 |
C20-C24(2) |
0.394 |
127.32 |
|
n- π * |
LPO34(2) |
1.895 |
C29-O35 |
0.064 |
68.87 |
|
n- π * |
LPO35(2) |
1.827 |
C10-C11(2) |
0.429 |
121.17 |
|
|
|
|
C29-O34 |
0.059 |
54.10 |
|
|
|
|
C29-H67 |
0.031 |
18.16 |
|
n- σ* |
LPO36(2) |
1.930 |
C31-C33 |
0.051 |
28.58 |
|
|
|
|
C32-C33 |
0.046 |
26.07 |
|
|
|
|
O38-H39 |
0.025 |
18.16 |
|
n- σ* |
LPO38 |
1.972 |
C31-C33 |
0.051 |
12.30 |
|
n- σ* |
LPO38(2) |
1.937 |
C30-C31 |
0.044 |
26.57 |
|
|
|
|
C31-H64 |
0.026 |
10.96 |
|
|
|
|
O48-H49 |
0.029 |
32.13 |
|
n- σ* |
LPO40(1) |
1.949 |
C30-H59 |
0.025 |
13.18 |
|
|
|
|
O36-H37 |
0.019 |
12.59 |
|
|
|
|
C41-O46 |
0.041 |
11.25 |
|
|
|
|
C41-H47 |
0.044 |
13.93 |
|
n- σ* |
LPO40(2) |
1.913 |
C29-C30 |
0.059 |
35.56 |
|
|
|
|
C41-C42 |
0.064 |
28.70 |
|
|
|
|
C41-O46 |
0.041 |
18.45 |
|
n- σ* |
LPO46 |
1.949 |
O40-C41 |
0.048 |
15.82 |
|
|
|
|
C41-C42 |
0.064 |
16.48 |
|
|
|
|
C44-C45 |
0.038 |
14.77 |
|
n- σ* |
LPO46(2) |
1.914 |
O40-C41 |
0.048 |
14.39 |
|
|
|
|
C41-C42 |
0.064 |
11.51 |
|
|
|
|
C41-H47 |
0.044 |
36.36 |
|
|
|
|
C44-H60 |
0.025 |
10.50 |
|
|
|
|
C44-C69 |
0.026 |
24.81 |
|
n- σ* |
LPO48 |
1.970 |
C42-H63 |
0.030 |
13.89 |
|
|
|
|
O50-H51 |
0.016 |
11.59 |
|
n- σ* |
LPO48(2) |
1.947 |
C41-C42 |
0.064 |
39.83 |
|
|
|
|
C42-H63 |
0.030 |
12.72 |
|
n- σ* |
LPO50 |
1.974 |
C42-C43 |
0.048 |
8.74 |
|
n- σ* |
LPO50(2) |
1.952 |
C42-C43 |
0.048 |
24.06 |
|
|
|
|
C43-H62 |
0.034 |
30.88 |
|
|
|
|
C43-C45 |
0.046 |
32.51 |
|
|
|
|
C45-H61 |
0.032 |
24.23 |
|
|
|
|
C54-H57 |
0.030 |
29.66 |
|
|
|
|
C54-H58 |
0.026 |
27.07 |
|
π*-π* |
C3-C8*(2) |
0.468 |
C-O14*(2) |
0.160 |
481.33 |
|
π*-π* |
C20-C24*(2) |
0.394 |
C17-C18*(2) |
0.361 |
1107.92 |
Table 3 lists the computed dipole moment (μ), polarizability (α) and first order hyperpolarizability (β0) as, 1.832 Debye, 0.840 x 10-30 esu and 6.477 x 10-30 esu, respectively. The first hyperpolarizability (β0) of the title molecule is fifteen times higher than that of urea; hence this molecule has considerable NLO activity. In this molecule, the π-π* interaction plays a major role in intra-molecular charge transfer and hence the hyperpolarizability of the molecule being increased.
Parameters |
B3LYP/6-31G(d,p) |
Dipole moment ( μ ) Debye |
|
μx |
-1.774 |
μy |
-0.165 |
μz |
0.423 |
μ |
1.832 |
Polarizability ( α ) x10-30 esu |
|
αxx |
396.795 |
αxy |
-40.462 |
αyy |
362.008 |
αxz |
6.148 |
αyz |
18.176 |
αzz |
246.065 |
α |
0.840 |
Hyperpolarizability ( β0)x10-30 esu |
|
βxxx |
-790.564 |
βxxy |
-511.101 |
βxyy |
210.872 |
βyyy |
49.444 |
βxxz |
-84.623 |
βxyz |
50.617 |
βyyz |
-14.420 |
βxzz |
4.864 |
βyzz |
-8.700 |
βzzz |
-2.629 |
β0 |
6.477 |
Calculated at B3LYP/ |
Oscillator strength |
Experimental |
Calculated |
Excited state 1 |
Singlet-A/f=0.0010 |
328.00 |
3.5964 eV /344.74nm |
151->154 (HOMO-2-LUMO) |
|
|
-5.203 |
153->154 (HOMO- LUMO) |
|
|
-4.835 |
Excited State 2 |
Singlet-A /f=0.0499 |
282.60 |
4.2310 eV /293.04 nm |
150 ->154(HOMO-3- LUMO) |
|
|
-5.263 |
150 ->156(HOMO-3- LUMO+2) |
|
|
-6.153 |
150 ->157(HOMO-3- LUMO+3 |
|
|
-5.939 |
152 ->154(HOMO-1-LUMO |
|
|
-4.917 |
153 ->154(HOMO-LUMO |
|
|
-4.835 |
Excited State 3 |
Singlet-A/ f=0.0252 |
279.80 |
4.4338 eV /279.63 nm |
151 ->154(HOMO-2- LUMO) |
|
|
-5.203 |
152 ->154(HOMO-1-LUMO) |
|
|
-4.917 |
153 ->154(HOMO-LUMO) |
|
|
-4.835 |
- Cook NC and Samman S. Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996;7(2):66–76.
- Ribeiro MH. Naringinases: occurrence, characteristics, and applications. Appl Microbiol Biotechnol. 2011;90(6):1883–1895. Doi: 10.1007/s00253-011-3176-8.
- Renugadevi J and Prabu SM. Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology. 2009;256(1-2):128–134.
- Choudhury R, Chowrimootoo G, Srai K and Debnam E, Rice-Evans CA. Interactions of the Flavonoid Naringenin in the Gastrointestinal Tract and the Influence of Glycosylation. Biochem Biophys Res Commun. 1999;265(2):410–415.
- Parini M, Braquet P and Garany RP. Heterogenous effect of flavonoids on K+ loss and lipid peroxidation induced by oxygen-free radicals in human red cells. Pharmacol. Res. Commun. 1986;18(1) 61-72.
- Jung G. Hennings G, Pfeifer M, and BesslerWG. Iteraction of metal-complexing coumpounds with lymphocytes and lympho cell lines. Mol. Pharmacol. 1983;23(3):698-702.
- Jagetia GC, Venkatesha VA and Reddy TK. Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis. 2003;13(4):337-343.
- Schindler R and Mentlein R. Flavonoids and vitamin E reduce the release of the angiogenic peptide vascular endothelial growth factor from human tumor cells. J. Nutr. 2006;136(6):1477-1482.
- Martin MJ, Marhuenda E, Perez-Guerrero C and Franco JM. Antiulcer Effect of Naringin on Gastric Lesions Induced by Ethanol in Rats. Pharmacology. 1994;49(3):144-150.
- Gaussian 03 program, (Gaussian Inc., Walling ford CT) 2004.
- Schlegel HB. Optimization of equilibrium geometries and transition structures J. Comput. Chem. 1982;3(2):214-218.
- Frisch NAB and Holder AJ. GAUSSVIEW User Manual, Gaussian Inc, Pittsburgh PA. 2000.
- Rauhut G and Pulay G. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J. Phys. Chem. 1995;99(10):3093-3100.
- Michalska D. Raint Program. Wroclaw University of Technology.2003.
- Michalska D and Wysokinski R. The prediction of Raman spectra of platinum(II) anticancer drugs by density functional theory. Chem. Phys. Lett. 2005;403(1-3):211-217.
- Wera M, Serdiuk LE, Roshal AD and Jerzy B. ejowski . 3-Hydroxy-2-(4-methoxyphenyl)-4Hchromen-4-one J. Blazejowski. Acta Cryst. 2011;E67(o440).
- Zhang ZT and Zhang XL. F-type or T-type Aromatic–Aromatic Interaction in Two Isoflavone Derivatives. J. Chem. Crystallogr. 2008;38(2):129-133.
- Silverstein M, Basseler CG and Morill CT. Spectrometric Identification of Organic Compounds. Wiley: New York, 1981.
- Krishnakumar V, Murugeswari K, Prabavathi N and Mathammal R. Molecular structure, vibrational spectra, HOMO, LUMO and NMR studies of 2-chloro-4-nitrotoluene and 4-chloro-2-nitrotoluene. Spectrochim. Acta A. 2012;91:1-10.
- Varsanyi G. Vibrational Spectra of Benzene Derivatives. Academic Press: New York. 1969.
- Colthup NB, Daly LH and Wiberly SE. Introduction to Infrared and Raman spectroscopy. Academic Press: New York. 1990.
- Erdoğdu Y and Güllüoglu MT. Analysis of vibrational spectra of 2 and 3-methylpiperidine based on density functional theory calculations. Spectrochim. Acta. 2009;74(1):162-167.
- Roeges NPG. A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures. Wiley: New York.1994.
- Varghese HT, Paniker CY, Madhavan VS, Mathew S, Vinsova J and Alsenoy CV. FT-IR, FT-Raman and DFT calculations of the salicylanilide derivate 4-chloro-2-(4-bromophenylcarbamoyl)phenyl acetate. J. Raman. Spectrosc. 2009;40(9):1211-1223.
- Sundaraganesan N, Meganathan C, Saleem H and Dominic Joshua B. Vibrational spectroscopy investigation using ab initio and density functional theory analysis on the structure of 5-amino-o-cresol. Spectrochim. Acta A. 2007;68(3):619-625.
- Sebastien S and Sundaraganesan N. The spectroscopic (FT-IR, FT-IR gas phase, FT-Raman and UV) and NBO analysis of 4-Hydroxypiperidine by density functional method. Spectrochim. Acta A. 2010;75(3):941-952.
- Ramalingam M, Joccob M, Venuvanlingam P and Sundaraganesan N. Harmonic analysis of vibrations of morpholine-4-ylmethylthiourea: A DFT, midinfrared and Raman spectral study. Spectrochim. Acta A. 2008;71(3):996-1002.
- Pavia DL, Lampman GM and Kriz GS. Introduction to Spectroscopy. Third Edition, Thompson Learning, US. 2001.
- Oliveira RN, Mancini MC, Oliveira FCS, Passos TM, Quility B and Thiré B, et. al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Revista Matéria. 2016;21(3):767–779.
- Akkaya Y and Akyüz S. Infrared and Raman spectra, ab initio calculations vibrational assignment of 4-aminosalicylic acid. Vib. Spectrosc. 2006;42(2):292-301.
- Nogueira HIS. Surface-enhanced Raman scattering (SERS) of 3-aminosalicylic and 2-mercaptonicotinic acids in silver colloids. Spectrochim. Acta A. 1998;54(10):1461-1470.
- Sundaraganesan N, Meganathan C, Anand B and Lapouge C. FT-IR, FT-Raman spectra and ab initio DFT vibrational analysis of p-bromophenoxyacetic acid. Spectrochim. Acta A. 2007;66(3):773-780.
- Erdoğdu Y, Unsalan O and Güllüoglu MT. FT-Raman, FT-IR spectral and DFT studies on 6, 8-dichloroflavone and 6, 8-dibromoflavone. J. Raman Spectrosc. 2010;41(7):820-828.
- Puri M, Kurt A, Schwarz WH, Singh S and Kennedy JF. Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. Int. J. Bio. Macromol. 2011;48(1):58-62.
- Subramanian MK, Anbarasan PM and Manimegali S. Molecular structure, NMR and vibrational spectral analysis of 2,4-difluorophenol by ab initio HF and density functional theory. J. Raman Spectrosc. 2009;40(11):1657-1663.
- Ficarra R, Tommasini S, Raneri D, Calabrò ML, Di Bella MR and Rustichelli C, et. al. Study of flavonoids/beta-cyclodextrins inclusion complexes by NMR, FT-IR, DSC, X-ray investigation. J Pharm Biomed Anal. 2002;29(6):1005-1014
- Reed AE, and Weinhold F. Natural bond orbital analysis of near‐Hartree–Fock water dimer. J. Chem. Phys. 1983;78(6):4066-4073.
- Reed AE, and Weinhold F. Natural localized molecular orbitals. J. Chem. Phys. 1985;83(4):1736-1740.
- Reed AE, Weinstock RB and Weinhold F. Natural population analysis. J.Chem. Phys. 1985;83(2):735-746.
- Foster JP and Wienhold F. Natural hybrid orbitals. J. Am. Chem. Soc. 1980;102(24):7211-7218.
- Chocholousova J. Vladimir Spirko J and Hobza P. First local minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯O and improper blue-shifted C–H⋯O hydrogen bonds. Phys. Chem. Chem. Phys. 2004;6(1):37-41.
- Colthup NB, Daly LH and Wiberly SE, Introduction to Infrared and Raman Spectroscopy. Academic Press: New York, 1990.
- Castiglioni C, Del zoppo M, Zuliani P and Zerbi G. Experimental molecular hyperpolarizabilities from vibrational spectra in systems with large electron-phonon coupling. Synth. Met. 1995;74(2):171-177.
- Del zoppo M, Castiglioni C and Zerbi G, Non-Linear Opt. 1995;9:73.
- Del zoppo M, Castiglioni C, Zuliani P, Razelli A, Zerbi G and Blanchard-Desce M. Use of vibrational spectra for the determination of first-order molecular hyperpolarizabilities of push–pull polyenes as function of structural parameters. J. Appl. Polym. Sci. 1998;70(7):1311-1320.
- Zuliani P, Del zoppo M, Castiglioni C and Zerbi G. Solvent effects on first‐order molecular hyperpolarizability: A study based on vibrational observables. Chem. Phys. 1995;103(23):9935.
- Ravikumar C, Huber Joe I and Jayakumar VS, Charge transfer interactions and nonlinear optical properties of push–pull chromophore benzaldehyde phenylhydrazone: A vibrational approach. Chem. Phys. Lett. 2008;460(4-6):552-558.