Short Communication
Open Access

Correcting Einstein:
The Conservation of Time

Paul T E Cusack

^{*}
#23 Park Ave, Saint John, NB E2J 1R2, Canada

***Corresponding author:**Paul T E Cusack, 23 Park Ave, Saint John, NB E2J 1R2, Canada, Tel : (506) 652-6350;

E-mail:

Received: Received: June 26, 2018; Accepted: October 2, 2018; Published: October 30, 2018

**Citation:**Paul T E C (2018) Correcting Einstein:The Conservation of Time. Int J Mol Theor Phy 2(2):1-3 DOI: 10.15226/2576-4934/2/2/00115

Abstract

We hereby examine how Einstein’s Relativity is to be
replaced by the new theory: Astrotheology. Principles of the
conservation of Energy; time being Kinetic Energy, and the
number of degrees of freedom are considered. Eigen vectors
and eigen values are essential when studying Astrotheology.
Astrotheology provides a superior way of looking at cosmology.

**Keywords:**Space; Time; Kinetic Energy; Eigenvector; Eigen valueIntroduction

Albert Einstein provided a revolutionary theory that was to
supercede Newton’s. His theory persisted for over 100 years.
However, there is a better way of looking at cosmology. It lies in the
theory of Astro-Theology, Cusack’s Universe. Einstein’s idea that
the speed of light is constant no matter what still holds Space and
time are absolute however. Space is three dimensional, and time
is K.E. Finally energy is proportional to the mass times the speed
of light squared still holds. However, introducing the eigenvector
and the eigen value alter Relativity dramatically. Space and time
are absolute. We begin with the conservation of time.

The Conservation of Time

I figured out why Einstein was wrong in Relativity. Time is an
eigen vector. It doesn’t change come what may in direction and
magnitude. All the other variables can rotate, but time remains
constant. I’ve shown elsewhere that time t=space s. Since the
speed of light c=d/t=s/t=Constant.

Two observers with synchronous clocks may go anywhere at any speed but their eigen vectors don’t alter. Other vectors can rotate relative to any other observer, but the eigen vector doesn’t change one iota. When they meet up again, their individual paths could run afoul, but not their eigen vector of time; their clocks. They both age the same totally at varying rate of speed. This is where Einstein was wrong.

Put another way, two observers with synchronous clocks start out with zero Potential energy relative to each other. As they take different paths, their P.E. and K.E. changes. But when they come back together, their P.E. relative to each other is the same. By the principle of the Conservation of Energy, their K.E. (time) must be the same.

There is no doppler effect for light because light is a reaction with he Ether. The ionic bond of BeCl2 is broken.

$s=E\times t=\left|E\right|\left|t\right|\mathrm{sin}\theta $

$t=E\times s=\left|E\right|\left|s\right|\mathrm{sin}\theta $

$\frac{s}{t}=\frac{\left|s\right|}{\left|t\right|}$

$\frac{s}{\left|s\right|}=\frac{t}{\left|t\right|}$

Eigenvector $\begin{array}{cc}=t=\sqrt{3=\mathrm{tan}{60}^{\xb0}}& =\sqrt{\frac{3}{1}}\end{array}$

$\mathrm{tan}\theta =\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}$

$\begin{array}{ccc}c=3=& {\left(\sqrt{3}\right)}^{2}& ={t}^{2}\end{array}$

$c={\mathrm{tan}}^{2}60\xb0$

${\mathrm{sin}}^{2}\theta +{\mathrm{cos}}^{2}\theta =1$

${\mathrm{cos}}^{2}\theta =1-{\mathrm{sin}}^{2}\theta =Mom.$

$c={\mathrm{sin}}^{2}\frac{60}{\left[1-{\mathrm{sin}}^{2}60\xb0\right]}$

$\left[1-{\mathrm{sin}}^{2}\theta \right]c={\mathrm{sin}}^{2}\theta $

$\left[1-{\mathrm{sin}}^{2}\theta \right]\mathrm{csc}\theta ={\mathrm{sin}}^{2}\theta $

${\mathrm{sin}}^{2}\theta +\mathrm{sin}\theta -\frac{1}{\mathrm{sin}\theta =0}$

${x}^{2}+x-c=0$

${\left(\sqrt{\frac{3}{2}}\right)}^{2}+\left(\sqrt{\frac{3}{2}}\right)-3=E$

$\frac{3}{4-0.866-3}=E$

$116-c=E$

$M-c=E$

$\left|E\right|\left|t\right|\mathrm{cos}\theta -c=E$

$c-\mathrm{cos}\theta =-E$

$3-\frac{1}{2}=2.5=E$

E=Work t

$=Fdt$

$K.E=\frac{1}{2}M{v}^{2}$

Another point Einstein got wrong was in having too many degrees of freedom. The eigenvalue, c=3m, locks down energy, time, and space. Einstein had these free floating. They are not free floating. The eigenvalue locks in to determine that energy, time and space must fluctuate together.

space-time-mass-velocity are conserved.

$\frac{dt}{Mv}=\u2102$

$d=s=\left|E\right|\left|t\right|\mathrm{sin}\theta $

$=s=\left|E\right|\left|t\right|\mathrm{sin}\theta $

$t=\sqrt{3}$

$M=\left|E\right|\left|t\right|\mathrm{cos}\theta $

$v=c$

$\frac{\left[\mathrm{sin}\theta \sqrt{3}\right]}{\left[\mathrm{cos}\theta c\right]}$

For $\theta ={60}^{\xb0}$

$\frac{\left[\mathrm{sin}{60}^{\xb0}\sqrt{3}\right]}{\left[\mathrm{cos}{60}^{\xb03}\right]}$

$\sqrt{\frac{3}{2}}\times \sqrt{3}=\left[\frac{1}{2\times c}\right]$

$\frac{3}{2}\times 2c$

$3c={c}^{2}$

c=Eigenvalue for the conservation of space, time, mass and velocity.

Now:

$dt=M{c}^{2}c$

$\frac{dt}{M{c}^{3}}$

$M=\frac{dt}{{c}^{3}}=\frac{st}{{c}^{3}}=\frac{{t}^{2}}{{c}^{3}}$

$M=\frac{{t}^{2}}{{c}^{3}}=\frac{{\sqrt{\left(3\right)}}^{2}}{{3}^{3}}$

$M=\frac{1}{{c}^{2}}$

$M=\frac{E}{{c}^{2}}$

$\frac{\left[\mathrm{sin}\theta \sqrt{3}\right]}{\left[\mathrm{cos}\theta {v}^{2}\right]}=c$

$\frac{\sqrt{\frac{3}{2}}\times \sqrt{3}}{\frac{1}{2}{v}^{2}}=c$

Where θ=60°

$\frac{3}{{v}^{2}}=c$

${v}^{2}=1,v=1$

$M=E.t=\left|E\right|\left|t\right|\mathrm{cos}\theta $

$M=E.t=\left|E\right|\left|t\right|\mathrm{cos}\theta $

$\frac{1}{9}=\mathrm{cos}\theta $

$\theta =83.62\xb0$

$P.E=M{c}^{2}$

$\frac{P.E}{{c}^{2}}=M$

$K.E=\frac{1}{2}M{v}^{2}$

$K.E=\frac{1}{2}\left(\frac{P.E}{{c}^{2}}\right){v}^{2}$

$P.E.=\frac{1}{2}K.E.$

$P.E.+K.E.=1$

$P.E.+\frac{1}{2}P.E.=1$

$1.5P.E.=1$

$P.E.=\frac{1}{1.5}=\frac{2}{3}=G$

$P.E.=G$

$P.E=Mgh$

$gh={c}^{2}$

$P.E.=G=M{c}^{2}$

$Mgh\text{}G=M{c}^{2}$

$=M{c}^{2}$

$\mathrm{cos}\theta G=M{c}^{2}$

$\mathrm{cos}\theta =\frac{M}{G}$

$\theta =60\xb0$

$\frac{1}{2}=\frac{M}{\frac{2}{3}}$

$M=\frac{2\times 3}{2}$

$=\frac{1}{{c}^{2}}$

$M=\frac{E}{{c}^{2}}$

$E=M{c}^{2}$

$\mathrm{cos}\theta =\frac{M}{G}$

$\theta =60\xb0$

$\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)=M$

$\frac{1}{3}=M$

$=\frac{1}{c}$

$M=\frac{1}{3}$

$\mathrm{cos}\theta =\frac{1}{\mathrm{cos}ec\theta}$

$\mathrm{cos}\theta =\mathrm{sin}\theta $

Two observers with synchronous clocks may go anywhere at any speed but their eigen vectors don’t alter. Other vectors can rotate relative to any other observer, but the eigen vector doesn’t change one iota. When they meet up again, their individual paths could run afoul, but not their eigen vector of time; their clocks. They both age the same totally at varying rate of speed. This is where Einstein was wrong.

Put another way, two observers with synchronous clocks start out with zero Potential energy relative to each other. As they take different paths, their P.E. and K.E. changes. But when they come back together, their P.E. relative to each other is the same. By the principle of the Conservation of Energy, their K.E. (time) must be the same.

There is no doppler effect for light because light is a reaction with he Ether. The ionic bond of BeCl2 is broken.

$s=E\times t=\left|E\right|\left|t\right|\mathrm{sin}\theta $

$t=E\times s=\left|E\right|\left|s\right|\mathrm{sin}\theta $

$\frac{s}{t}=\frac{\left|s\right|}{\left|t\right|}$

$\frac{s}{\left|s\right|}=\frac{t}{\left|t\right|}$

Eigenvector $\begin{array}{cc}=t=\sqrt{3=\mathrm{tan}{60}^{\xb0}}& =\sqrt{\frac{3}{1}}\end{array}$

$\mathrm{tan}\theta =\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}$

$\begin{array}{ccc}c=3=& {\left(\sqrt{3}\right)}^{2}& ={t}^{2}\end{array}$

$c={\mathrm{tan}}^{2}60\xb0$

**But we know that**${\mathrm{sin}}^{2}\theta +{\mathrm{cos}}^{2}\theta =1$

${\mathrm{cos}}^{2}\theta =1-{\mathrm{sin}}^{2}\theta =Mom.$

$c={\mathrm{sin}}^{2}\frac{60}{\left[1-{\mathrm{sin}}^{2}60\xb0\right]}$

$\left[1-{\mathrm{sin}}^{2}\theta \right]c={\mathrm{sin}}^{2}\theta $

$\left[1-{\mathrm{sin}}^{2}\theta \right]\mathrm{csc}\theta ={\mathrm{sin}}^{2}\theta $

${\mathrm{sin}}^{2}\theta +\mathrm{sin}\theta -\frac{1}{\mathrm{sin}\theta =0}$

${x}^{2}+x-c=0$

${\left(\sqrt{\frac{3}{2}}\right)}^{2}+\left(\sqrt{\frac{3}{2}}\right)-3=E$

$\frac{3}{4-0.866-3}=E$

$116-c=E$

$M-c=E$

$\left|E\right|\left|t\right|\mathrm{cos}\theta -c=E$

$c-\mathrm{cos}\theta =-E$

$3-\frac{1}{2}=2.5=E$

E=Work t

$=Fdt$

$K.E=\frac{1}{2}M{v}^{2}$

Another point Einstein got wrong was in having too many degrees of freedom. The eigenvalue, c=3m, locks down energy, time, and space. Einstein had these free floating. They are not free floating. The eigenvalue locks in to determine that energy, time and space must fluctuate together.

space-time-mass-velocity are conserved.

$\frac{dt}{Mv}=\u2102$

$d=s=\left|E\right|\left|t\right|\mathrm{sin}\theta $

$=s=\left|E\right|\left|t\right|\mathrm{sin}\theta $

$t=\sqrt{3}$

$M=\left|E\right|\left|t\right|\mathrm{cos}\theta $

$v=c$

$\frac{\left[\mathrm{sin}\theta \sqrt{3}\right]}{\left[\mathrm{cos}\theta c\right]}$

For $\theta ={60}^{\xb0}$

$\frac{\left[\mathrm{sin}{60}^{\xb0}\sqrt{3}\right]}{\left[\mathrm{cos}{60}^{\xb03}\right]}$

$\sqrt{\frac{3}{2}}\times \sqrt{3}=\left[\frac{1}{2\times c}\right]$

$\frac{3}{2}\times 2c$

$3c={c}^{2}$

c=Eigenvalue for the conservation of space, time, mass and velocity.

Now:

$dt=M{c}^{2}c$

$\frac{dt}{M{c}^{3}}$

$M=\frac{dt}{{c}^{3}}=\frac{st}{{c}^{3}}=\frac{{t}^{2}}{{c}^{3}}$

$M=\frac{{t}^{2}}{{c}^{3}}=\frac{{\sqrt{\left(3\right)}}^{2}}{{3}^{3}}$

$M=\frac{1}{{c}^{2}}$

$M=\frac{E}{{c}^{2}}$

$\frac{\left[\mathrm{sin}\theta \sqrt{3}\right]}{\left[\mathrm{cos}\theta {v}^{2}\right]}=c$

$\frac{\sqrt{\frac{3}{2}}\times \sqrt{3}}{\frac{1}{2}{v}^{2}}=c$

Where θ=60°

$\frac{3}{{v}^{2}}=c$

${v}^{2}=1,v=1$

$M=E.t=\left|E\right|\left|t\right|\mathrm{cos}\theta $

$M=E.t=\left|E\right|\left|t\right|\mathrm{cos}\theta $

$\frac{1}{9}=\mathrm{cos}\theta $

$\theta =83.62\xb0$

$P.E=M{c}^{2}$

$\frac{P.E}{{c}^{2}}=M$

$K.E=\frac{1}{2}M{v}^{2}$

$K.E=\frac{1}{2}\left(\frac{P.E}{{c}^{2}}\right){v}^{2}$

$P.E.=\frac{1}{2}K.E.$

$P.E.+K.E.=1$

$P.E.+\frac{1}{2}P.E.=1$

$1.5P.E.=1$

$P.E.=\frac{1}{1.5}=\frac{2}{3}=G$

$P.E.=G$

$P.E=Mgh$

$gh={c}^{2}$

$P.E.=G=M{c}^{2}$

$Mgh\text{}G=M{c}^{2}$

$=M{c}^{2}$

$\mathrm{cos}\theta G=M{c}^{2}$

$\mathrm{cos}\theta =\frac{M}{G}$

$\theta =60\xb0$

$\frac{1}{2}=\frac{M}{\frac{2}{3}}$

$M=\frac{2\times 3}{2}$

$=\frac{1}{{c}^{2}}$

$M=\frac{E}{{c}^{2}}$

$E=M{c}^{2}$

$\mathrm{cos}\theta =\frac{M}{G}$

$\theta =60\xb0$

$\left(\frac{2}{3}\right)\left(\frac{1}{2}\right)=M$

$\frac{1}{3}=M$

$=\frac{1}{c}$

$M=\frac{1}{3}$

$\mathrm{cos}\theta =\frac{1}{\mathrm{cos}ec\theta}$

$\mathrm{cos}\theta =\mathrm{sin}\theta $

Conclusion

Einstein’s Relativity was partially correct. E=Mc2 is true. But
the Eigen vector and Eigen value tether energy time and space.
There is no Doppler effect for light because light is a reaction
with the Ether. The ionic bond of BeCl2 is broken. Another point
Einstein got wrong was in having too many degrees of freedom.
Einstein’s Theory of Relativity is incorrect. Astrotheology rules
now.

FacebookTwitterLinkedInGoogle+YouTubeRSS